Skip to main content
Log in

Application of the Generalized Decomposition Method for Solving the Nonlinear Problem of Jeffery–Hamel Flow

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

In this paper the nonlinear problem of the two-dimensional flow of an incompressible viscous fluid between nonparallel plane walls is investigated analytically. The third-order nonlinear differential equation governing the dynamic field of the considered flow has been treated by a new analytical method called the generalized decomposition method (GDM). Indeed, this method introduces a new strategy of decomposition that can use all necessary information concerning the terms of series solutions and the nonlinear term Nu. This paper investigates, on the one hand, the velocity distribution in convergent and divergent channels for various Reynolds numbers, Re and various channel half-angles, α, and, on the other hand, the compares our results with the results obtained by the fourth-order Runge Kutta method and other applied analytical methods, thus showing the higher accuracy of the adopted generalized decomposition method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Jeffery, “Two-dimensional steady motion of a viscous fluid,” Philos. Mag., 29, 455–465 (1915).

    Article  MATH  Google Scholar 

  2. G. Hamel, “Spiralformige Bewegungen zaher Flussigkeiten,” Jahresber. Dtsсh. Math. Ver., 25, 34–60 (1916).

    MATH  Google Scholar 

  3. L. Rosenhead, “The steady two-dimensional radial flow of viscous fluid between two inclined plane walls,” Proc. R. Soc. London, A 175, 436–467 (1940).

    Article  Google Scholar 

  4. K. Millsaps and K. Pohlhausen, “Thermal distributions in Jeffery–Hamel flows between non-parallel plane walls,” J. Aeronaut. Sci., 20, 187–196 (1953).

    Article  MATH  MathSciNet  Google Scholar 

  5. L. E. Fraenkel, “Laminar Flow in symmetrical channels with slightly curved walls. I. On the Jeffery–Hamel solutions for flow between plane walls,” Proc. R. Soc. London, A267, 119–138 (1962).

    Article  MathSciNet  Google Scholar 

  6. H. Schlichting and K. Gersten, Boundary Layer Theory, 8th revised edition, Springer, Berlin (2000).

    Book  MATH  Google Scholar 

  7. G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge (1967).

    MATH  Google Scholar 

  8. F. M. White, Viscous Fluid Flow, McGraw Hill (1974).

  9. J. F. Uribe, E. Diaz Herrera, A. Bravo, and R. Perlata Fabi, “On the stability of Jeffery Hamel flow,” Phy. Fluids, 9, No. 9, 2798–2800 (1997).

    Article  MATH  Google Scholar 

  10. L. J. Sobey and P. G. Drazin, “Bifurcation of two-dimensional channel flows,” J. Fluid Mech., 171, 263–287 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  11. W. H. H. Banks, P. G. Drazin, and M. B. Zaturska, “Perturbations of Jeffery–Hamel flow,” J. Fluid Mech., 186, 559–581 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  12. S. J. Liao, Beyond Perturbation: Introduction to Homotopy Analysis Method, Chapman and Hall/CRC Press, Boca Raton (2003).

    Book  Google Scholar 

  13. S. J. Liao and K. F. Cheung, “Homotopy analysis of nonlinear progressive waves in deep water,” J. Eng. Math., 45, No. 2, 105–116 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  14. J. H. He and X. H. Wu, “Variational iteration method: New development and applications,” Comput. Math. Appl., 54, 881–894 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  15. J. H. He, “Variational iteration method-Some recent results and new interpretations,” J. Comput. Appl. Math., 207, 3–17 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Dordrecht (1994).

    Book  MATH  Google Scholar 

  17. M. M. Rashidi and S. Dinarvand, “Purely analytic approximate solutions for steady three-dimensional problem of condensation film on inclined rotating disk by homotopy analysis method,” Nonlinear Anal.: Real World Appl., 10, 2346–2356 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  18. B. I. Beong In Yun, “Intuitive approach to the approximate analytical solution for the Blasius problem,” Appl. Math. Comput., 215, 3489–3494 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  19. A. M. Wazwaz, “The variational iteration method for solving two forms of Blasius equation on a half-infinite domain,” Appl. Math. Comput., 188, 485–491(2007).

    Article  MATH  MathSciNet  Google Scholar 

  20. Y. Cherruault, “Convergence of Adomian’s method,” Kybernetes, 18, 31–38 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  21. K. Abbaoui and Y. Cherruault, “Convergence of Adomian’s method applied to nonlinear equations,” Math. Comput. Model., 28, 103–109 (1994).

    MATH  MathSciNet  Google Scholar 

  22. K. Abbaoui and Y. Cherruault, “Convergence of Adomian’s method applied to differential equations,” Math. Comput. Math. Appl., 20, 60–73 (1994).

    MathSciNet  Google Scholar 

  23. D. Lesnic, “The decomposition method for initial value problems,” Appl. Math. Comput., 181, 206–213 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  24. A. M. Wazwaz, “The modified decomposition method for analytic treatment of differential equations,” App. Math. Comput., 173, 165–176 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  25. A. M. Wazwaz, “A reliable modification of Adomian decomposition method,” App. Math. Comput., 102, 77–86 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Yong-Chang, D. Chuangyin, and Y. Yoshitsugu, “An extension of the decomposition method for solving nonlinear equations and its convergence,” Comput. Math. Appl., 55, 760–775 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  27. Q. Esmaili, A. Ramiar, E. Alizadeh, and D. D. Ganji, “An approximation of the analytical solution of the Jeffery–Hamel flow by decomposition method,” Phys. Lett., A372, 3434–3439 (2008).

    Article  Google Scholar 

  28. A. A. Joneidi, G. Domairry, and M. Babaelahi, “Three analytical methods applied to Jeffery–Hamel flow,” Commun. Nonlinear Sci. Numer. Simul., 15, 3423–3434 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Rafik Sari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kezzar, M., Sari, M.R. Application of the Generalized Decomposition Method for Solving the Nonlinear Problem of Jeffery–Hamel Flow. Comput Math Model 26, 284–297 (2015). https://doi.org/10.1007/s10598-015-9273-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-015-9273-2

Keywords

Navigation