Skip to main content

Advertisement

Log in

Impact of geostatistical nonstationarity on convolutional neural network predictions

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Convolutional neural networks (CNNs) are gaining tremendous attention in subsurface studies due to their ability to learn from spatial image data. However, most deep learning studies in spatial context do not consider the impact of geostatistical nonstationarity, which is commonly encountered within the subsurface phenomenon. We demonstrate the impact of geostatistical nonstationarity on CNN prediction performance. We propose a CNN model to predict the variogram range of sequential Gaussian simulation (SGS) realizations. Model performance is evaluated for stationarity and three common forms of geostatistical nonstationarity: (1) large relative variogram range-related nonstationarity, (2) additive trend and residual model-related nonstationarity, and (3) mixture population model-related nonstationarity. Our CNN model prediction accuracy decreases in the presence of large relative variogram range-related nonstationarity, for the additive trend and residual model-related nonstationarity, the relative prediction errors increase for high trend variance proportions with a decrease in variogram range; regarding the mixture population model-related nonstationarity, the predictions are closer to the smaller variogram range. Common forms of geostatistical nonstationarity may impact CNN predictions, as with geostatistical estimation methods, trend removal and workflows with stationary residuals are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pyrcz, M., Deutsch, C.V.: Geostatistical reservoir modeling. New York, New York : Oxford University Press, Oxford (2014)

    Google Scholar 

  2. Meul, M., Van Meirvenne, M.: Kriging soil texture under different types of nonstationarity. Geoderma. 112, 217–233 (2003). https://doi.org/10.1016/S0016-7061(02)00308-7

    Article  Google Scholar 

  3. Cressie, N.: Kriging nonstationary data. J. Am. Stat. Assoc. 81, 625–634 (1986). https://doi.org/10.1080/01621459.1986.10478315

    Article  Google Scholar 

  4. Prokoph, A., Barthelmes, F.: Detection of nonstationarities in geological time series: wavelet transform of chaotic and cyclic sequences. Comput. Geosci. 22, 1097–1108 (1996). https://doi.org/10.1016/S0098-3004(96)00054-4

    Article  Google Scholar 

  5. Hirsch, R.M.: A perspective on nonstationarity and water Management1. JAWRA J. Am. Water Resour. Assoc. 47, 436–446 (2011). https://doi.org/10.1111/j.1752-1688.2011.00539.x

    Article  Google Scholar 

  6. van Thienen-Visser, K., Breunese, J.N.: Induced seismicity of the Groningen gas field: history and recent developments. Lead. Edge. 34, 664–671 (2015). https://doi.org/10.1190/tle34060664.1

    Article  Google Scholar 

  7. Cuba, M.A., Leuangthong, O., Ortiz, J.M.: Detecting and quantifying sources of non-stationarity via experimental semivariogram modeling. Stoch. Env. Res. Risk A. 26, 247–260 (2012). https://doi.org/10.1007/s00477-011-0501-9

    Article  Google Scholar 

  8. Salazar, J.J., Garland, L., Ochoa, J., Pyrcz, M.J.: Fair train-test split in machine learning: mitigating spatial autocorrelation for improved prediction accuracy. J. Pet. Sci. Eng. 209, 109885 (2021). https://doi.org/10.1016/j.petrol.2021.109885

    Article  Google Scholar 

  9. Leung, Y., Mei, C.-L., Zhang, W.-X.: Statistical tests for spatial nonstationarity based on the geographically weighted regression model. Environ. Plan. Econ. Space. 32, 9–32 (2000). https://doi.org/10.1068/a3162

    Article  Google Scholar 

  10. Atkinson, P.M., Lloyd, C.D.: Non-stationary variogram models for geostatistical sampling optimisation: an empirical investigation using elevation data. Comput. Geosci. 33, 1285–1300 (2007). https://doi.org/10.1016/j.cageo.2007.05.011

    Article  Google Scholar 

  11. Vieira, S., Hatfield, J., Nielsen, D., Biggar, J.: Geostatistical theory and application to variability of some agronomical properties. Hilgardia. 51, 1–75 (1983)

    Article  Google Scholar 

  12. Vieira, S.R., de Carvalho, J.R.P., Ceddia, M.B., González, A.P.: Detrending non stationary data for geostatistical applications. Bragantia. 69, 01–08 (2010). https://doi.org/10.1590/S0006-87052010000500002

    Article  Google Scholar 

  13. Deutsch, C.V., Journel, A.G.: GSLIB: geostatistical software library and User’s guide. Oxford University Press (1992)

  14. Santos, J.E., Yin, Y., Jo, H., Pan, W., Kang, Q., Viswanathan, H.S., Prodanović, M., Pyrcz, M.J., Lubbers, N.: Computationally efficient multiscale neural networks applied to fluid flow in complex 3D porous media. Transp. Porous Media. 140, 241–272 (2021). https://doi.org/10.1007/s11242-021-01617-y

    Article  Google Scholar 

  15. Jo, H., Pyrcz, M.J.: Automatic Semivariogram modeling by convolutional neural network. Math. Geosci. 54, 177–205 (2022). https://doi.org/10.1007/s11004-021-09962-w

    Article  Google Scholar 

  16. Imamverdiyev, Y., Sukhostat, L.: Lithological facies classification using deep convolutional neural network. J. Pet. Sci. Eng. 174, 216–228 (2019). https://doi.org/10.1016/j.petrol.2018.11.023

    Article  Google Scholar 

  17. Li, Z., Meier, M.-A., Hauksson, E., Zhan, Z., Andrews, J.: Machine learning seismic wave discrimination: application to earthquake early warning. Geophys. Res. Lett. 45, 4773–4779 (2018). https://doi.org/10.1029/2018GL077870

    Article  Google Scholar 

  18. Dramsch, J.S., Lüthje, M., Christensen, A.N.: Complex-valued neural networks for machine learning on non-stationary physical data. Comput. Geosci. 146, 104643 (2021). https://doi.org/10.1016/j.cageo.2020.104643

    Article  Google Scholar 

  19. Yamashita, R., Nishio, M., Do, R.K.G., Togashi, K.: Convolutional neural networks: an overview and application in radiology. Insights Imaging. 9, 611–629 (2018). https://doi.org/10.1007/s13244-018-0639-9

    Article  Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM. 60, 84–90 (2017). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  21. Zhang, T.-F., Tilke, P., Dupont, E., Zhu, L.-C., Liang, L., Bailey, W.: Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks. Pet. Sci. 16, 541–549 (2019). https://doi.org/10.1007/s12182-019-0328-4

    Article  Google Scholar 

  22. Jung, K., Shah, N.H.: Implications of non-stationarity on predictive modeling using EHRs. J. Biomed. Inform. 58, 168–174 (2015). https://doi.org/10.1016/j.jbi.2015.10.006

    Article  Google Scholar 

  23. Solomon, J., Lyu, P., Marin, D., Samei, E.: Noise and spatial resolution properties of a commercially available deep learning-based CT reconstruction algorithm. Med. Phys. 47, 3961–3971 (2020). https://doi.org/10.1002/mp.14319

    Article  Google Scholar 

  24. Gómez-Hernández, J.J., Cassiraga, E.F.: Theory and practice of sequential simulation. In: Armstrong, M., Dowd, P.A. (eds.) Geostatistical Simulations, pp. 111–124. Springer Netherlands, Dordrecht (1994)

    Chapter  Google Scholar 

  25. Verly, G.: Sequential Gaussian simulation: a Monte Carlo method for generating models of porosity and permeability. In: Spencer, A.M. (ed.) Generation, Accumulation and Production of Europe’s Hydrocarbons III, pp. 345–356. Springer, Berlin Heidelberg, Berlin, Heidelberg (1993)

    Chapter  Google Scholar 

  26. Chen, F., Chen, S., Peng, G.: Using sequential Gaussian simulation to assess geochemical anomaly areas of Lead element. In: Li, D., Chen, Y. (eds.) Computer and Computing Technologies in Agriculture VI, pp. 69–76. Springer, Berlin, Heidelberg (2013)

    Chapter  Google Scholar 

  27. Mowrer, H.T.: Propagating uncertainty through spatial estimation processes for old-growth subalpine forests using sequential Gaussian simulation in GIS. Ecol. Model. 98, 73–86 (1997). https://doi.org/10.1016/S0304-3800(96)01938-2

    Article  Google Scholar 

  28. Delbari, M., Afrasiab, P., Loiskandl, W.: Using sequential Gaussian simulation to assess the field-scale spatial uncertainty of soil water content. CATENA. 79, 163–169 (2009). https://doi.org/10.1016/j.catena.2009.08.001

    Article  Google Scholar 

  29. Nussbaumer, R., Mariethoz, G., Gloaguen, E., Holliger, K.: Which path to choose in sequential Gaussian simulation. Math. Geosci. 50, 97–120 (2018). https://doi.org/10.1007/s11004-017-9699-5

    Article  Google Scholar 

  30. Frykman, P., Deutsch, C.V.: Geostatistical Scaling Laws Applied to Core and Log Data. Presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, (October 1999). https://doi.org/10.2118/56822-MS

  31. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature. 521, 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  32. Albawi, S., Mohammed, T. A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET). pp. 1–6 (2017). https://doi.org/10.1109/ICEngTechnol.2017.8308186

  33. Chauhan, R., Ghanshala, K.K., Joshi, R.C.: Convolutional Neural Network (CNN) for Image Detection and Recognition. In: 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India, pp. 278–282 (2018). https://doi.org/10.1109/ICSCCC.2018.8703316

  34. Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., Chen, T.: Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018). https://doi.org/10.1016/j.patcog.2017.10.013

    Article  Google Scholar 

  35. Wang, Q., Ma, Y., Zhao, K., Tian, Y.: A comprehensive survey of loss functions in machine learning. Ann. Data Sci. 9, 187–212 (2022). https://doi.org/10.1007/s40745-020-00253-5

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Digital Reservoir Characterization Technology (DIRECT) Industry Affiliate Program at the University of Texas at Austin for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Prodanović, M. & Pyrcz, M.J. Impact of geostatistical nonstationarity on convolutional neural network predictions. Comput Geosci 27, 35–44 (2023). https://doi.org/10.1007/s10596-022-10181-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-022-10181-3

Keywords

Navigation