Skip to main content
Log in

Numerical evaluation of mean-field homogenisation methods for predicting shale elastic response

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Homogenisation techniques have been successfully used to estimate the mechanical response of synthetic composite materials, due to their ability to relate the macroscopic mechanical response to the material microstructure. The adoption of these mean-field techniques in geo-composites such as shales is attractive, partly because of the practical difficulties associated with the experimental characterisation of these highly heterogeneous materials. In this paper, numerical modelling has been undertaken to investigate the applicability of homogenisation methods in predicting the macroscopic, elastic response of clayey rocks. The rocks are considered as two-level composites consisting of a porous clay matrix at the first level and a matrix-inclusion morphology at the second level. The simulated microstructures ranged from a simple system of one inclusion/void embedded in a matrix to complex, random microstructures. The effectiveness and limitations of the different homogenisation schemes were demonstrated through a comparative evaluation of the macroscopic elastic response, illustrating the appropriate schemes for upscaling the microstructure of shales. Based on the numerical simulations and existing experimental observations, a randomly distributed pore system for the micro-structure of porous clay matrix has been proposed which can be used for the subsequent development and validation of shale constitutive models. Finally, the homogenisation techniques were used to predict the experimental measurements of elastic response of shale core samples. The developed methodology is proved to be a valuable tool for verifying the accuracy and performance of the homogenisation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abou-Chakra Guéry, A., Cormery, F., Shao, F., Kondo, D.: A micromechanical model of elastoplastic and damage behavior of a cohesive geomaterial. Comput. Geotech. Int. J. Solids Struct. 45, 1406–1429 (2008)

    Article  Google Scholar 

  2. Abou-Chakra Guéry, A., Cormery, F., Shao, F., Kondo, D.: A comparative micromechanical analysis of the effective properties of a geomaterial: effect of mineralogical compositions. Comput. Geotech. 37, 585–593 (2010). doi:10.1016/j.compgeo.2010.02.008

    Article  Google Scholar 

  3. Andersen, S., Andersen, L.: Modelling of landslides with the material-point method. Comput. Geosci. 14, 137–147 (2010). doi:10.1007/s10596-009-9137-y

    Article  Google Scholar 

  4. Andersen, S., Andersen, L.: Analysis of spatial interpolation in the material-point method. Comput. Struct. 88, 506–518 (2010). doi:10.1016/j.compstruc.2010.01.004

    Article  Google Scholar 

  5. Bardenhagen, S.G., Kober, E.M.: The generalized interpolation material point method. Comput. Model. Eng. Sci. 5(6), 477–495 (2004)

    Google Scholar 

  6. Bass, J.D.: Mineral physics and crystallography. In: Ahrens, T.J. (ed.) A Handbook of Physical Constants. AGU Reference Shelf (1995)

  7. Benveniste, Y.: Revisiting the generalized Self-Consistent Scheme in composites: clarification of some aspects and a new formulation. J. Mech. Phys. Solids 56, 2984–3002 (2008)

    Article  Google Scholar 

  8. Beuth, L., Wieckowski, Z., Vermeer, P.A.: Solution of quasi-static large-strain problems by the material point method. Int. J. Numer. Anal. Methods Geomech. 35, 1451–1465 (2011). doi:10.1002/nag.965

    Google Scholar 

  9. Bobko, C., Ulm, F.J.: The nano-mechanical morphology of shale. Mech. Mater. 40, 318–337 (2008). doi:10.1016/j.mechmat.2007.09.006

    Article  Google Scholar 

  10. Chalmers, G.R., Bustin, R.M., Power, I.M.: Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. Am. Assoc. Petrol Geol. (AAPG) Bull. 96(6), 1099–1119 (2012)

    Google Scholar 

  11. Chateau, X., Dormieux, L.: Micromechanics of saturated and unsaturated porous media. Int. J. Numer. Anal. Methods Geomech. 26, 831–844 (2002). doi:10.1002/nag.227

    Article  Google Scholar 

  12. Chen, L., Zhang, L., Kang, Q., Viswanathan, H.S., Yao, J., Tao, W.: Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity. Sci. Rep. 5(8089) (2015)

  13. Christensen, R.M., Lo, K.H.: Solutions for effective and shear properties in three phase and cylinder models. J. Mech. Phys. Solids 27, 315–330 (1979)

    Article  Google Scholar 

  14. Domnesteanu, P., McCann, C., Sothcott, J.: Velocity anisotropy and attenuation of shale in under- and overpressured conditions. Geophys. Prospect. 50, 487–503 (2002)

    Article  Google Scholar 

  15. Fritsch, A., Hellmich, C.: Universal microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J. Theor. Biol. 224, 597–620 (2007). doi:10.1016/j.jtbi.2006.09.013

    Article  Google Scholar 

  16. Hbaieb, K., Wang, Q.X., Chia, Y.H.J., Cotterell, B.: Modelling stiffness of polymer/clay nanocomposites. Polymer 48, 901–909 (2007)

    Article  Google Scholar 

  17. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965)

    Article  Google Scholar 

  18. Hornby, B.E., Schwartz, L., Hudson, J.: Anisotropic effective medium modeling of the elastic properties of shales. Geophysics 59, 1570–1583 (1994)

    Article  Google Scholar 

  19. Hornby, B.E.: Experimental laboratory determination of the dynamic elastic properties of wet, drained shales. Geophys. Res. J. 103(B12), 29945–29964 (1998)

    Article  Google Scholar 

  20. Jakobsen, M., Hudson, J.A., Johansen, T.A.: T-matrix approach to shale acoustics. Geophys. J. Int. 154, 533–558 (2003)

    Article  Google Scholar 

  21. Jassim, I., Stolle, D., Vermeer, P.: Two-phase dynamic analysis by material point method. Int. J. Numer. Anal. Methods Geomech. (2012)

  22. Klusemann, B., Svendsen, B.: Homogenisation methods for multi-phase elastic composites: comparisons and benchmarks. Tech. Mech. 30(4), 374–386 (2010)

    Google Scholar 

  23. Ma, J., Sanchez, J.P., Wu, K., Couples, G.D., Jiang, Z.: A pore network model for simulating non-ideal gas flow in micro- and nano-porous materials. Fuel 116, 498–508 (2014). doi:10.1016/j.fuel.2013.08.041

    Article  Google Scholar 

  24. Maghous, S., Dormieux, L., Barthelemy, J.F.: Micromechanical approach to the strength properties of frictional geomaterials. Eur. J. Mech. A-Solid 28, 179–188 (2009). doi:10.1016/j.euromechsol.2008.03.002

    Article  Google Scholar 

  25. Mast, C.M., Mackenzie-Helnwein, P., Arduino, P., Miller, G.R., Shin, W.: Mitigating kinematic locking in the material point method. J. Comput. Phys. 231, 5351–5373 (2012)

    Article  Google Scholar 

  26. Mast, C.M., Arduino, P., Miller, G.R., Shin, W., Mackenzie-Helnwein, P.: Avalanche and landslide simulation using the material point method: flow dynamics and force interaction with structures. Comput. Geosci. 231, 5351–5373 (2015)

    Google Scholar 

  27. Meier, T., Rybacki, E., Reinicke, A., Dresen, G.: Influence of borehole diameter on the formation of borehole breakouts in black shale. Int. J. Rock Mech. Min. Sci. 62, 74–85 (2013). doi:10.1016/j.ijrmms.2013.03.012

    Google Scholar 

  28. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21 (1973)

  29. Mortazavi, B., Baniassadi, M., Bardon, J., Ahzi, S.: Modeling of two-phase random composite materials by finite element, Mori–Tanaka and strong contrast methods. Compos. Part B 45, 1117–1125 (2013)

    Article  Google Scholar 

  30. Moussaddy, H., Therriault, D., Lévesque, M.: A numerical approximation to the elastic properties of shpare reinforced composite. In: The 19th International Conference in Composite Materials (2013)

  31. Naraghia, M.E., Javadpour, F.: A stochastic permeability model for the shale-gas systems. Int. J. Coal Geol. 140, 111–124 (2015). doi:10.1016/j.coal.2015.02.004

    Article  Google Scholar 

  32. Onoda, G.Y., Liniger, E.G.: Random loose packings of uniform spheres and the dilatancy onset. Phys. Rev. Lett. 64(22), 2727–2730 (1990)

    Article  Google Scholar 

  33. Ortega, J.A., Ulm, F.J., Abousleiman, Y.N.: The effect of the nanogranular nature of shale on their poroelastic behavior. Acta Geotech. 2, 155–182 (2007). doi:10.1007/s11440-007-0038-8

    Article  Google Scholar 

  34. Sayers, C.M.: The elastic anisotropy of shale. J. Geophy. Res. 99(B1), 767–774 (1994)

    Article  Google Scholar 

  35. Segurado, J., Llorca, J.: A numerical approximation to the elastic properties of shpere reinforced composite. J. Mech. Phys. Solids 50, 2107–2121 (2002)

    Article  Google Scholar 

  36. Schmauder, S., Weber, U., Soppa, E.: Computational micromechanics of heterogeneous materials. Key Eng. Mater. 251–252, 415–422 (2003)

    Article  Google Scholar 

  37. Shen, W.Q., Shao, J.F., Kondo, D., Gatmiri, B.: A micro–macro model for clayey rocks with a plastic compressible porous matrix. Int. J. Plast. 36, 64–85 (2012). doi:10.1016/j.ijplas.2012.03.006

    Article  Google Scholar 

  38. Shen, W.Q., Kondo, D., Dormieux, L., Shao, J.F.: A closed-form three scale model for ductile rocks with a plastically compressible porous matrix. Mech. Mater. 59, 73–86 (2013)

    Article  Google Scholar 

  39. Sierra, R., Tran, M.H., Abousleiman, Y.N., Slatt, R.M.: Woodford shale mechanical properties and the impacts of lithofacies. In: the 44th US Rock Mech. Symp. (ARMA) 10-461 (2010)

  40. Stransky, J., Vorel, J., Zeman, J., Sejnoha, M.: Mori-Tanaka based estimates of effective thermal conductivity of various engineering materials. Micromachines 2, 129–149 (2011). doi:10.3390/mi2020129

    Article  Google Scholar 

  41. Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Meth. Appl. Mech. Eng. 118(1–2), 179–196 (1994). doi:10.1016/0045-7825(94)90112-0

    Article  Google Scholar 

  42. Sulsky, D., Schreyer, H.L.: Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems. Comput. Meth. Appl. Mech. Eng/ 139(1–4), 409–429 (1996). doi:10.1016/S0045-7825(96)01091-2

    Article  Google Scholar 

  43. Ulm, F.J., Abousleiman, Y.: The nanogranular nature of shale. Acta Geotech. 1, 77–88 (2006). doi:10.1007/s11440-006-0009-5

    Article  Google Scholar 

  44. Vasin, R.N., Wenk, H.R., Kanitpanyacharoen, W., Matthies, S., Wirth, R.: Elastic anisotropy modeling of Kimmeridge shale. J. Geophys. Res: Solid Earth 118, 3931–3956 (2013). doi:10.1002/jgrb.50259

    Article  Google Scholar 

  45. Vernik, L., Nur, A.: Ultrasonic velocity and anisotropy of hyrdocarbon source rocks. Geophysics 57(5), 727–735 (1992)

    Article  Google Scholar 

  46. Whitaker, M.L., Liu, W., Wang, L., Li, B.: Acoustic velocities and elastic properties of pyrite (FeS2) to 9.6 GPa. J. Earth Sci. 21, 792–80 (2010). doi:10.1007/s12583-010-0115-z

    Article  Google Scholar 

  47. Wieckowski, Z.: The material point method in large strain engineering problems. Comput. Meth. Appl. Mech. Eng. 193, 4417–4438 (2004). doi:10.1016/j.cma.2004.01.035

    Article  Google Scholar 

  48. Zaoui, A.: Continuum micromechanics: survey. J. Eng. Mech. 128(8), 808–816 (2002). doi:10.1061/(ASCE)0733-9399(2002)128:8(808)

    Article  Google Scholar 

  49. Zheng, Q.S., Du, D.X.: An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. J. Mech. Phys. Solids 49, 2765–2788 (2001)

    Article  Google Scholar 

  50. Zhu, Y., Xu, S., Payne, M., Martinez, A., Liu, E., Harris, C., Bandyopadhyay, K.: Improved rock-physics model for shale gas reservoirs. In: 82nd SEG Meeting Expanded Abstracts 0927 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rouainia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodarzi, M., Rouainia, M. & Aplin, A.C. Numerical evaluation of mean-field homogenisation methods for predicting shale elastic response. Comput Geosci 20, 1109–1122 (2016). https://doi.org/10.1007/s10596-016-9579-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-016-9579-y

Keywords

Navigation