Skip to main content
Log in

A simple method for the synthesis of isoindoline derivatives

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

A method for the synthesis of isoindoline derivatives was developed based on a domino reaction involving a donor-acceptor cyclopropane containing a bromomethyl group in the ortho position of the aromatic substituent and structurally varied primary amines (anilines, benzylamines, cycloalkylamines). It was shown that the resulting N-benzyl-1,3-dihydroisoindole under hydrogenolysis conditions at room temperature underwent selective cleavage of the exocyclic N–CH2Ar bond followed by in situ lactamization to form benzo[b]pyrrolizidinone. The same product was obtained in a domino reaction starting with reduction of the azidomethyl group at the ortho position of the donor aromatic substituent. Similarly, the generation of the o-2-aminoethyl group was accompanied by two successive cyclization reactions leading to the formation of benzo[e]indolizidinone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) Xia, Y.; Liu, X.; Feng, X. Angew. Chem., Int. Ed. 2021, 60, 9192. (b) Ghosh, A.; Dey, A.; Banerjee, P. Chem. Commun. 2021, 57, 5359. (c) Augustin, A. U.; Werz, D. B. Acc. Chem. Res. 2021, 54, 1528. (d) Ghosh, K.; Das, S. Org. Biomol. Chem. 2021, 19, 965. (e) Pirenne, V.; Muriel, B.; Waser, J. Chem. Rev. 2021, 121, 227. (f) Sarkar, T.; Das, B. K.; Talukdar, K.; Shah, T. A.; Punniyamurthy, T. ACS Omega 2020, 5, 26316. (g) Werz, D. B.; Biju, A. T. Angew. Chem., Int. Ed. 2020, 59, 3385. (h) Singh, P.; Varshnaya, R. K.; Dey, R.; Banerjee, P. Adv. Synth. Catal. 2020, 362, 1447. (i) Ivanova, O. A.; Trushkov, I. V. Chem. Rec. 2019, 19, 2189. (j) Tomilov, Yu. V.; Menchikov, L. G.; Novikov, R. A.; Ivanova, O. A.; Trushkov, I. V. Russ. Chem. Rev. 2018, 87, 201. (k) Budynina, E. M.; Ivanov, K. L.; Sorokin, I. D.; Melnikov, M. Ya. Synthesis 2017, 49, 3035. (l) Pagenkopf, B. L.; Vemula, N. Eur. J. Org. Chem. 2017, 2561. (m) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Biomol. Chem. 2015, 13, 655. (n) Novikov, R. A.; Tomilov, Y. V. Mendeleev Commun. 2015, 25, 1. (o) Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem., Int. Ed. 2014, 53, 5504.

  2. (a) Varshnaya, R. K.; Singh, P.; Kaur, N.; Banerjee, P. Org. Chem. Front. 2021, 8, 1267. (b) Xu, L.; Yang, Q.; Zhong, S.; Li, H.; Tang, Y.; Cai, Y. Org. Lett. 2020, 22, 9016. (c) Suh, C. W.; Kwon, S. J.; Kim, D. Y. Org. Lett. 2017, 19, 1334. (d) Liu, P.; Cui, Y.; Chen, K.; Zhou, X.; Pan, W.; Ren, J.; Wang, Z. Org. Lett. 2018, 20, 2517. (e) Ma, W.; Fang, J.; Ren, J.; Wang, Z. Org. Lett. 2015, 17, 4180. (f) Wang, Z.; Chen, S.; Ren, J.; Wang, Z. Org. Lett. 2015, 17, 4184. (g) Zhu, J.; Liang, Y.; Wang, L.; Zheng, Z.-B.; Houk, K. N.; Tang, Y. J. Am. Chem. Soc. 2014, 136, 6900. (h) Zhu, W.; Fang, J.; Liu, Y.; Ren, J.; Wang, Z. Angew. Chem., Int. Ed. 2013, 52, 2032. (i) Wang, Z.; Ren, J.; Wang, Z. Org. Lett. 2013, 15, 5682. (j) Xing, S.; Pan, W.; Liu, C.; Ren, J.; Wang, Z. Angew. Chem., Int. Ed. 2010, 49, 3215.

  3. (a) Cui, Y.; Ren, J.; Lv, J.; Wang, Z. Org. Lett. 2021, 23, 9189. (b) Augustin, A. U.; Sensse, M.; Jones, P. G.; Werz, D. B. Angew. Chem., Int. Ed. 2017, 56, 14293. (c) Zhu, W.; Ren, J.; Wang, Z. Eur. J. Org. Chem. 2014, 2014, 3561. (d) Ren, J.; Bao, J.; Ma, W.; Wang, Z. Synlett 2014, 2260. (e) Wang, Z. Synlett 2012, 2311.

  4. (a) Fadeev, A. A.; Makarov, A. S.; Ivanova, O. A.; Uchuskin, M. G.; Trushkov, I. V. Org. Chem. Front. 2022, 9, 737. (b) Andreev, I. A.; Ratmanova, N. K.; Augustin, A. U.; Ivanova, O. A.; Levina, I. I.; Khrustalev, V. N.; Werz, D. B.; Trushkov, I. V. Angew. Chem., Int. Ed. 2021, 60, 7927. (c) Wang, D.; Zhao, J.; Chen, J.; Xu, Q.; Li, H. Asian J. Org. Chem. 2019, 8, 2032. (d) Ivanova, O. A.; Andronov, V. A.; Vasin, V. S.; Shumsky, A. N.; Rybakov, V. B.; Voskressensky, L. G.; Trushkov, I. V. Org. Lett. 2018, 20, 7947. (e) Ivanov, K. L.; Bezzubov, S. I.; Melnikov, M. Ya.; Budynina, E. M. Org. Biomol. Chem. 2018, 16, 3897.

  5. (a) Xiao, J.-A.; Peng, H.; Liang, J.-S.; Meng, R.-F.; Su, W.; Xiao, Q.; Yang, H. Chem. Commun. 2021, 57, 13369. (b) Unnava, R.; Chahal, K.; Reddy, K. R. Org. Biomol. Chem. 2021, 19, 6025. (c) Sahu, A. K.; Biswas, S.; Bora, S. K.; Saikia, A. K. New J. Chem. 2022, 46, 12456.

  6. (a) Luo, W.; Sun Z., Fernando, E. H. N.; Nesterov, V. N.; Cundari, T. R.; Wang, H. ACS Catal. 2019, 9, 8285. (b) Li, S. K.; Huang, L. L.; Lv, Y. D.; Feng, H. D. Russ. J. Org. Chem. 2019, 55, 1432. (c) Das, S.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2017, 56, 11554. (d) So, S. S.; Auvil, T. J.; Garza, V. J.; Mattson, A. E. Org. Lett. 2012, 14, 444.

  7. (a) Boichenko, M. A.; Plodukhin, A. Yu.; Shorokhov, V. V.; Lebedev, D. S.; Filippova, A. V.; Zhokhov, S. S.; Tarasenko, E. A.; Rybakov, V. B.; Trushkov, I. V.; Ivanova, O. A. Molecules 2022, 27, 8468. (b) Akaev, A. A.; Melnikov, M. Ya.; Budynina, E. M. Org. Lett. 2019, 21, 9795. (c) Martin, M. C.; Patil, D. V.; France, S. J. Org. Chem. 2014, 79, 3030. (d) Badarinarayana, V.; Mahmud, H.; Lovely, C. J. Heterocycles 2017, 95, 1082. (e) Gratia, S.; Mosesohn, K.; Diver, S. T. Org. Lett. 2016, 18, 5320. (f) Chen, Y.; Cao, W.; Yuan, M.; Wang, H.; Ding, W; Shao, M.; Xu, X. Synth. Commun. 2008, 38, 3346.

  8. Han, J.-Q.; Zhang, H.-H.; Xu, P.-F.; Luo, Y.-C. Org. Lett. 2016, 18, 5212.

    Article  CAS  PubMed  Google Scholar 

  9. Das, B. K.; Pradhan, S.; Punniyamurthy, T. Chem. Commun. 2019, 55, 8083.

    Article  Google Scholar 

  10. (a) Singh, P.; Kaur, N.; Banerjee, P. J. Org. Chem. 2020, 85, 3393. (b) Karmakar, R.; Suneja, A.; Singh, V. K. Org. Lett. 2016, 18, 2636. (c) Afanasyev, O. I.; Tsygankov, A. A.; Usanov, D. L.; Chusov, D. Org. Lett. 2016, 18, 5968. (d) Xia, Y.; Lin, L.; Chang, F.; Liao, Y.; Liu, X.; Feng, X. Angew. Chem., Int. Ed. 2016, 55, 12228. (e) Xia, Y.; Liu, X.; Zheng, H.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. 2015, 54, 227. (f) Nambu, H.; Fukumoto, M.; Hirota, W.; Yakura, T. Org. Lett. 2014, 16, 4012. (g) Zhang, Z.; Zhang, W.; Li, J.; Liu, Q.; Liu, T.; Zhang, G. J. Org. Chem. 2014, 79, 11226. (h) Jacoby, D.; Celerier, J. P.; Haviari, G.; Petit, H.; Lhommet, G. Synthesis 1992, 884.

  11. (a) Lin, H.; Long, J. Z.; Roche, A. M.; Svensson, K. J.; Dou, F. Y.; Chang, M. R.; Strutzenberg, T.; Ruiz, C.; Cameron, M. D.; Novick, S. J.; Berdan, C. A.; Louie, S. M.; Nomura, D. K.; Spiegelman, B. M.; Griffin, P. R.; Kamenecka, T. M. J. Med. Chem. 2018, 61, 3224. (b) Shultz, M.; Fan, J.; Chen, C.; Cho, Y. S.; Davis, N.; Bickford, S.; Buteau, K.; Cao, X.; Holmqvist, M.; Hsu, M.; Jiang, L.; Liu, G.; Lu, Q.; Patel, C.; Suresh, J. R.; Selvaraj, M.; Urban, L.; Wang, P.; Yan-Neale, Y.; Whitehead, L.; Zhang, H.; Zhou, L.; Atadja, P. Bioorg. Med. Chem. Lett. 2011, 21, 4909. (c) Müller, A.; Höfner, G.; Renukappa-Gutke, T.; Parsons, C. G.; Wanner, K. T. Bioorg. Med. Chem. Lett. 2011, 21, 5795. (d) Van Goethem, S.; Van der Veken, P.; Dubois, V.; Soroka, A.; Lambeir, A.-M.; Chen, X.; Haemers, A.; Scharpé, S.; De Meester, I.; Augustyns, K. Bioorg. Med. Chem. Lett. 2008, 18, 4159. (e) Van der Veken, P.; Soroka, A.; Brandt, I.; Chen, Y.-S.; Maes, M.-B.; Lambeir, A.-M.; Chen, X.; Haemers, A.; Scharpé, S.; Augustyns, K.; De Meester, I. J. Med. Chem. 2007, 50, 5568. (f) Hamprecht, D.; Micheli, F.; Tedesco, G.; Checchia, A.; Donati, D.; Petrone, M.; Terreni, S.; Wood, M. Bioorg. Med. Chem. Lett. 2007, 17, 428. (g) Jiang, W.-T.; Chen, Y.-S.; Hsu, T.; Wu, S.-H.; Chien, C.-H.; Chang, C.-N.; Chang, S.-P.; Lee, S.-J.; Chen, X. Bioorg. Med. Chem. Lett. 2005, 15, 687. (h) Kukkola, P. J.; Bilci, N. A.; Ikler, T.; Savage, P.; Shetty, S. S.; DelGrande, D.; Jeng, A. Y. Bioorg. Med. Chem. Lett. 2001, 11, 1737. (i) Berger, D.; Citarella, R.; Dutia, M.; Greenberger, L.; Hallett, W.; Paul, R.; Powell, D. J. Med. Chem. 1999, 42, 2145. (j) Kapples, K. J.; Shutske, G. M. J. Heterocycl. Chem. 1997, 34, 1335.

  12. Dias, D. A.; Kerr, M. A. Org. Lett. 2009, 11, 3694.

    Article  CAS  PubMed  Google Scholar 

  13. Guest, M.; Mir, R.; Foran, G.; Hickson, B.; Necakov, A.; Dudding, T. J. Org. Chem. 2020, 85, 13997.

    Article  CAS  PubMed  Google Scholar 

  14. Thapa, P.; Corral, E.; Sardar, S.; Pierce, B. S.; Foss, F. W., J. Org. Chem. 2019, 84, 1025.

    Article  CAS  PubMed  Google Scholar 

  15. Ratmanova, N. K.; Andreev, I. A.; Leontiev, A.V.; Momotova, D.; Novoselov, A. M.; Ivanova, O. A.; Trushkov, I. V. Tetrahedron 2020, 76, 131031.

    Article  CAS  Google Scholar 

  16. Alajarin, M.; Egea, A.; Orenes, R.-A.; Vidal, A. Org. Biomol. Chem. 2016, 14, 10275.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga A. Ivanova.

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, 2023, 59(1/2), 54–62

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4369 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shorokhov, V.V., Lebedev, D.S., Boichenko, M.A. et al. A simple method for the synthesis of isoindoline derivatives. Chem Heterocycl Comp 59, 54–62 (2023). https://doi.org/10.1007/s10593-023-03162-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-023-03162-6

Keywords

Navigation