Skip to main content
Log in

Experimental and quantum-chemical study of nucleophilic substitution mechanism in berberine

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Principal differences in the interaction mechanisms of alkaloid berberine with primary and secondary amines were investigated experimentally and by quantum-chemical calculations according to density functional theory (DFT/B3LYP) with 6-31G** basis set. The nucleophilic substitution of 9-metoxy group with primary amine was shown to proceed through a stage of σ-complex formation and led to 9-alkylamino derivatives of berberine. Analogous substitution with a secondary amine did not occur due to unfavorable thermodynamic parameters. The secondary amine participated in this reaction not as the attacking nucleophile, but rather as a bifunctional catalyst of berberine hydrolysis to berberrubine. The driving force for all these processes was the stabilization of products by hydrogen bonding. Based on the obtained results, we developed a new effective method for the preparation of berberrubine, one of the key intermediates in synthetic transformations of berberine. New 9-monoalkylamino derivatives of berberine containing indole moieties were synthesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. ρ(r c ) – electron density; ∇2ρ(r c ) – the Laplacian of electron density.

References

  1. Saha, S. K.; Khuda-Bukhsh, A. R. Eur. J. Pharmacol. 2013, 714, 239.

    Article  CAS  Google Scholar 

  2. Siow, Y. L; Sarna, L; Karmin, O. Food Res. Int. 2011, 44, 2409.

    Article  CAS  Google Scholar 

  3. Khazir, J.; Mir, B. A.; Pilcher, D. L.; Riley, D. L. Phytochem. Lett. 2004, 7, 173.

    Article  Google Scholar 

  4. Crycova, L.; Dostal, J.; Marek, R. Phytochem. 2007, 68, 150.

    Article  Google Scholar 

  5. Ji, H.-F.; Shen, L. Molecules 2011, 16, 6732.

    Article  CAS  Google Scholar 

  6. Krivogorsky, B.; Pernat, J. A.; Douglas, K. A.; Czerniecki, N. J.; Grundt, P. Bioorg. Med. Chem. Lett. 2012, 22, 2980.

    Article  CAS  Google Scholar 

  7. Nechepurenko, I. V.; Salakhutdinov, N. F.; Tolstikov, G. A. Khimiya v Interesakh Ustoichovogo Razvitiya 2010, 18, 1.

    CAS  Google Scholar 

  8. Shan, W.-J.; Huang, L.; Zhou, Q.; Meng, F.-Ch.; Li, X.-Sh. Eur. J. Med. Chem. 2011, 46, 5885.

    Article  CAS  Google Scholar 

  9. Huang, L.; Shi, A.; He, F.; Li, X. Bioorgan. Med. Chem. 2010, 18, 1244.

    Article  CAS  Google Scholar 

  10. Ma, Y.; Ou, T.-M.; Hou, J.-Q.; Lu, Y.-J.; Tan, J.-H.; Gu, L.-Q.; Huang, Zh.-Sh. Bioorg. Med. Chem. 2008, 16, 7582.

    Article  CAS  Google Scholar 

  11. Ma, Y.; Ou, T.-M.; Tan, J.-H.; Hou, J.-Q.; Huang, Sh.-L.; Gu, L.-Q.; Huang, Zh.-Sh. Eur. J. Med. Chem. 2011, 46, 1906.

    Article  CAS  Google Scholar 

  12. Huang, L.; Luo, Z.; He, F.; Shi, A. Bioorg. Med Chem. Let. 2010, 20, 6649.

    Article  CAS  Google Scholar 

  13. Ma, Y.; Ou, T.-M.; Tan, J.-H.; Hou, J.-Q.; Huang, Sh.-L. Bioorg. Med. Chem. Let. 2009, 19, 3414.

    Article  CAS  Google Scholar 

  14. Bodiwala, H. S.; Sabde, S.; Mitra, D.; Bhutani, K. K.; Singh, I. P. Eur. J. Med. Chem. 2011, 46, 1045.

    Article  CAS  Google Scholar 

  15. Burov, O. N.; Kurbatov, S. V.; Morozov, P. G.; Kletskii, M. E.; Tatarov, A. V. Chem. Heterocycl. Compd. 2015, 51, 772. [Khim. Geterotsikl. Soedin. 2015, 51, 772.]

  16. Lam, Y. Int. J. Pharma Sci. Res. 2014, 5, 350.

    Google Scholar 

  17. Bader, R. F. W. Atoms in Molecules. Quantum Theory [Russian translation]; Mir, Moscow, 2001.

    Google Scholar 

  18. Kariuki, B. M.; Jones, W. Acta Cryst. Sect. C 1995, 51, 1234.

    Article  Google Scholar 

  19. Iwasa, K.; Kamigauchi, M.; Uek, M.; Taniguch, M. Eur. J. Med. Chem. 1996, 31, 469.

    Article  CAS  Google Scholar 

  20. Gorb, L.; Podolyan, E.; Dziekonski, P.; Sokalski, W. A.; Leszczynski, J. J. Am. Chem. Soc. 2004, 126, 10119.

    Article  CAS  Google Scholar 

  21. Jovené, C.; Jacquet, M.; Marrot, J.; Bourdreux, F.; Kletsky, M. E.; Burov, O. N.; Gonçalves, A.-M.; Goumont, F. Eur. J. Org. Chem. 2014, 6451.

  22. Elliott, I. W. J. Heterocycl. Chem. 1967, 4, 639.

    Article  CAS  Google Scholar 

  23. Becke, A. D. Phys. Rev. A. 1988, 38, 3098.

    Article  CAS  Google Scholar 

  24. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

    Article  CAS  Google Scholar 

  25. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B. 1988, 37, 785.

    Article  CAS  Google Scholar 

  26. Burov, O. N.; Kletskii, M. E.; Gulevskaya, A. V. Russ. Chem. Bull. 2013, 62, 1156. [Izv. Akad. Nauk, Ser. Khim. 2013, 1155.]

  27. Kletskii, M. Е.; Burov, О. N.; Dalinger, I. L.; Shevelev, S. А. Comp. Theor. Chem. 2014, 1033, 31.

    Article  CAS  Google Scholar 

  28. Suzdalev, K. F.; Den'kina, S. V.; Starikova, A. A.; Dvurechensky, V. V.; Kletsky, M. E.; Burov, O. N. Mendeleev Commun. 2011, 21, 231.

    Article  CAS  Google Scholar 

  29. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr. T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E., Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, J. D.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Gaussian, Inc.: Wallingford, 2004.

    Google Scholar 

  30. Schlegel, H. B. Theor. Chim. Acta 1984, 66, 333.

    Article  CAS  Google Scholar 

  31. Hirsh, M.; Quapp, W. Chem. Phys. Lett. 2004, 395, 150.

    Article  Google Scholar 

  32. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.

    Article  Google Scholar 

  33. Allen, F. H. Acta Crystallogr., Sect. B: Struct. Sci. 2002, B58, 380.

    Article  CAS  Google Scholar 

Download references

This work was performed within the framework of Project part of the State Assignment No.4.129.2014/K from the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg N. Burov.

Additional information

The Supplementary information file containing the geometrical characteristics of structures 524 and the transition states, as well as the full and relative energy (in tabular form) for all stationary points on the reaction MEP is available online at http://link.springer.com/journal/10593.

Translated from Khimiya Geterotsiklicheskikh Soedinenii, 2015, 51(11/12), 997–1007

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burov, O.N., Kletskii, M.E., Fedik, N.S. et al. Experimental and quantum-chemical study of nucleophilic substitution mechanism in berberine. Chem Heterocycl Comp 51, 997–1007 (2015). https://doi.org/10.1007/s10593-016-1810-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-016-1810-1

Keywords

Navigation