Skip to main content
Log in

Genetic heterogeneity of two bioeconomically important kelp species along the Norwegian coast

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Knowledge of genetic diversity among wild populations is becoming increasingly important as more species are recognized for their bioeconomic value. Industrialization of natural resources, such as kelp in the marine shallow sublittoral zone through cultivation and wild-harvesting, may lead to extensive translocation and local population decimation. Without adequate resilience in the form of genetic diversity within and across populations and given the potential introduction of deleterious alleles from translocations, such anthropogenically pressured populations may not be able to sufficiently respond to future climate and other stressors. Here we provide an assessment of the genetic heterogeneity of two bioeconomically important kelp species, Laminaria hyperborea and Saccharina latissima, across the Norwegian coastal region from South (57°N) to North (78°N), by applying microsatellite genotyping. Isolation by distance was found for both kelp species when comparing genetic distance to geographic distance. L. hyperborea clustered into four distinct genetic groups corresponding to distinct geographical ecoregions, whereas S. latissima did not show equally strong geographical structuring but separated into three geographical clusters along the Norwegian coast. No genetic differentiation was found within the Norwegian Skagerrak region, corroborating previous findings. The identified genetic clustering of both kelp species supports the retention of established management regions along the Norwegian coast and argues for the continuation of a regional focused management plan for kelp resources. Further, the results demonstrate that care should be taken to prevent translocation of kelp between ecoregions in the ongoing industrialization of kelp cultivation, to maintain a healthy coastal ecosystem and sound natural population genetic diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberto F, Raimondi PT, Reed DC, Coelho NC, Leblois R, Whitmer A, Serrão EA (2010) Habitat continuity and geographic distance predict population genetic differentiation in giant kelp. Ecology 91:49–56

    Article  PubMed  Google Scholar 

  • Anderson EC, Dunham KK (2008) The influence of family groups on inferences made with the program Structure. Mol Ecol Resour 8:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Bekkby T, Moy FE (2011) Developing spatial models of sugar kelp (Saccharina latissima) potential distribution under natural conditions and areas of its disappearance in Skagerrak. Estuar Coast Shelf Sci 95:477–483

    Article  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Billot C, Rousvoal S, Estoup A, Epplen JT, Saumitou-Laprade P, Valero M, Kloareg B (1998) Isolation and characterization of microsatellite markers in the nuclear genome of the brown alga Laminaria digitata (Phaeophyceae). Mol Ecol 7:1778–1780

    Article  CAS  PubMed  Google Scholar 

  • Breton TS, Nettleton JC, O’Connell B, Bertocci M (2018) Fine-scale population genetic structure of sugar kelp, Saccharina latissima (Laminariales, Pheophyceae), in eastern Maine, USA. Phycologia 57:32–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Broch OJ, Ellingsen IH, Forbord S, Wang X, Volent Z, Alver MO, Hand A, Andresen K, Slagstad D, Reitan KI, Olsen Y, Skjermo J (2013) Modelling the cultivation and bioremediation potential of the kelp Saccharina latissima in close proximity to an exposed salmon farm in Norway. Aquac Environ Interact 4:187–206

    Article  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21:550–570

    Article  CAS  PubMed  Google Scholar 

  • Christie H, Gundersen H (2014) From sea urchin deserts to rich kelp forests: crabs and climate as drivers of ecosystem shifts in southern Nordland and eastern Finnmark. FRAM, Print version ISSN 1893–5532, Online version: ISSN 8193 – 5540

    Google Scholar 

  • Christie H, Norderhaug KM, Fredriksen S (2009) Macrophytes as habitat for fauna. Mar Ecol Prog Ser 396:221–233

    Article  Google Scholar 

  • Coyer JA, Hoarau G, Beszteri B, Pearson G, Olsen JL (2009) Expressed sequence tag-derived polymorphic SSR markers for Fucus serratus and amplification in other species of Fucus. Mol Ecol Resour 9:168–170

    Article  CAS  PubMed  Google Scholar 

  • Coyer JA, Hoarau G, Van Schaik J, Luijckx P, Olsen JL (2011) Trans-Pacific and trans-Arctic pathways of the intertidal macroalga Fucus distichus L. reveal multiple glacial refugia and colonizations from the North Pacific to the North Atlantic. J Biogeogr 38:756–771

    Article  Google Scholar 

  • Dieringer D, Schlötterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  CAS  Google Scholar 

  • Draget KI, Smidsrød O, Skjåk-Bræk G (2005) Alginates from Algae. Biopolymers Online. Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/3527600035.bpol6008

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. ‎Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    Article  CAS  Google Scholar 

  • Fagerli CW, Norderhaug KM, Christie HC (2013) Lack of sea urchin settlement may explain kelp forest recovery in overgrazed areas in Norway. Mar Ecol Prog Ser 488:119–132

    Article  Google Scholar 

  • Fagerli CW, Norderhaug KM, Christie H, Pedersen MF, Fredriksen F (2014) Predators of the destructive sea urchin grazer Stronglyocentrotus droebachiensis on the Norwegian coast. Mar Ecol Prog Ser 502:207–218

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faust E, Halvorsen KT, Andersen P, Knutsen H, André C (2018) Cleaner fish escape salmon farms and hybridize with local wrasse populations. R Soc Open Sci 5:171752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package), version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, Washington

    Google Scholar 

  • Filbee-Dexter K, Wernberg T (2018) Rise of turfs: a new battlefront for globally declining kelp forests. Bioscience 68:64–76

    Article  Google Scholar 

  • Fraser CI, Thiel M, Spencer HG, Waters JM (2010) Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp. BMC Evol Biol 10:203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredriksen S, Sjøtun K (2015) Risk assessment of introducing non-indigenous kelp. Report from Norwegian Environment Agency. M-299. (in Norwegian)

  • Fredriksen S, Sjøtun K, Lein TE, Rueness J (1995) Spore dispersal in Laminaria hyperborea (Laminariales, Phaeophyceae). Sarsia 80:47–53

    Google Scholar 

  • Fung T, Keenan K (2014) Confidence intervals for population allele frequencies: the general case of sampling from a finite diploid population of any size. PLoS ONE 9:e85925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glover KA, Quintela M, Wennevik V, Besnier F, Sørvik AGE, Skaala Ø (2012) Three decades of farmed escapees in the wild: a spatio-temporal analysis of Atlantic salmon population genetic structure throughout Norway. PLoS ONE 7:e43129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorman D, Connell SD (2009) Recovering subtidal forests in human-dominated landscapes. J Appl Ecol 46:1258–1265

    Article  Google Scholar 

  • Gudimov AV, Gudimova EN, Pavlova LV (2003) Effect of the Red King Crab Paralithodes camtschaticus on the Murmansk coastal macrobenthos: the first estimates using sea urchins of the genus Strongylocentrotus as an example. Doklady Biol Sci 393:539–541

    Article  CAS  Google Scholar 

  • Gundersen H, Christie H, de Wit H, Norderhaug KM, Bekkby T, Walday M (2011), CO2 uptake in marine habitats—an investigation, NIVA report no. 6070-2010. ISBN 987-82-577-5805-9 ,p 25

  • Gundersen H, Bryan T, Chen W, Moy F (2017) Ecosystem Services: In: the Coastal Zone of the Nordic Countries. TemaNord report 2016:552 by Nordisk Ministerråd. Copenhagen. https://doi.org/10.6027/TN2016-552

  • Guo Q (2012) Incorporating latitudinal and central–marginal trends in assessing genetic variation across species ranges. Mol Ecol 21:5396–5403

    Article  PubMed  Google Scholar 

  • Guzinski J, Mauger S, Cock JM, Valero M (2016) Characterization of newly developed expressed sequence tag-derived microsatellite markers revealed low genetic diversity within and low connectivity between European Saccharina latissima populations. J Appl Phycol 28:3057–3070

    Article  CAS  Google Scholar 

  • Haldane JBS (1930) A mathematical theory of natural and artificial selection. Proc Camb Philos Soc 26:220–230

    Article  Google Scholar 

  • Hale ML, Burg TM, Steeves TE (2012) Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 7:e45170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halvorsen KT, Larsen T, Sørdalen TK, Vøllestad LA, Knutsen H, Olsen EM (2017a) Impact of harvesting cleaner fish for salmonid aquaculture assessed from replicated coastal marine protected areas. Mar Biol Res 13:359–369

    Article  Google Scholar 

  • Halvorsen KT, Sørdalen TK, Vøllestad LA, Skiftesvik AB, Espeland SH, Olsen EM (2017b) Sex- and size-selective harvesting of corkwing wrasse (Symphodus melops)—a cleaner fish used in salmonid aquaculture. ‎ICES J Mar Sci 74:660–669

    Article  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  PubMed  Google Scholar 

  • Hedges SB (1992) The number of replications needed for accurate estimation of the bootstrap p value in phylogenetic studies. Mol Biol Evol 9:366–369

    CAS  PubMed  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature 405:907

    Article  CAS  PubMed  Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Article  Google Scholar 

  • Hoarau G, Coyer JA, Veldsink JH, Stam WT, Olsen JL (2007) Glacial refugia and recolonization pathways in the brown seaweed Fucus serratus. Mol Ecol 16:3606–3616

    Article  CAS  PubMed  Google Scholar 

  • Höglund J (2009) Evolutionary conservation genetics. Oxford University Press Inc., New York

    Book  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Res 9:1322–1332

    Article  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jangjoo M, Matter SF, Roland J, Keyghobadi N (2016) Connectivity rescues genetic diversity after a demographic bottleneck in a butterfly population network. Proc Natl Acad Sci USA 113:10914–10919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansson E, Quintela M, Dahle G, Albretsen J, Knutsen H, André C, Strand Å, Mortensen S, Taggart JB, Karlsbakk E, Kvamme BO, Glover KA (2017) Genetic analysis of goldsinny wrasse reveals evolutionary insights into population connectivity and potential evidence of inadvertent translocation via aquaculture. ICES J Mar Sci 74:2135–2147

    Article  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Kain JM, Jones NS (1975) The biology of Laminaria hyperborea VII. Reproduction of the sporophyte. J Mar Biol Assoc UK 55:567–582

    Article  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kerrison PD, Stanley MS, Kelly M, MacLeod A, Black KD, Hughes AD (2016) Optimising the settlement and hatchery culture of Saccharina latissima (Phaeophyta) by manipulation of growth medium and substrate surface condition. J Appl Phycol 28:1181–1191

    Article  Google Scholar 

  • Krumhansl KA, Okamoto DK, Rassweiler A, Novak M, Bolton JJ, Cavanaugh KC, Connell SD, Johnson CR, Konar B, Ling SD, Micheli F, Norderhaug KM, Pérez-Matus A, Sousa-Pinto I, Reed DC, Salomon AK, Shears NT, Wernberg T, Anderson RJ, Barrett NS, Buschmann AH, Carr MH, Caselle JE, Derrien-Courtel S, Edgar GJ, Edwards M, Estes JA, Goodwin C, Kenner MC, Kushner DJ, Moy FE, Nunn J, Steneck RS, Vásquez J, Watson J, Witman JD, Byrnes JEK (2016) Global patterns of kelp forest change over the past half-century. Proc Natl Acad Sci USA 113:13785–13790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leinaas HP, Christie H (1996) Effects of removing sea Urchins (Strongylocentrotus droebachiensis): stability of the Barren State and succession of kelp forest recovery in the East Atlantic. Oecologia 105:524–536

    Article  PubMed  Google Scholar 

  • Luttikhuizen PC, van den Heuvel FHM, Rebours C, Witte HJ, van Bleijswijk JDL, Timmermans K (2018) Strong population structure but no equilibrium yet: genetic connectivity and phylogeography in the kelp Saccharina latissima (Laminariales, Phaeophyta). ‎Ecol Evol 8:4265–4277

    Article  PubMed  PubMed Central  Google Scholar 

  • Maneiro I, Couceiro L, Bárbara I, Cremades J, Ruiz JM, Barreiro R (2011) Low genetic variation and isolation of northern peripheral populations of a red seaweed (Grateloupia lanceola). Aquat Conserv Mar Freshw Ecosyst 21:590–600

    Article  Google Scholar 

  • Mooney KM, Beatty GE, Elsäßer B, Follis ES, Kregting L, O’Connor NE, Riddell GE, Provan J (2018) Hierarchical structuring of genetic variation at differing geographic scales in the cultivated sugar kelp Saccharina latissima. Mar Environ Res 142:108–115

    Article  CAS  PubMed  Google Scholar 

  • Moy FE, Christie H (2012) Large-scale shift from sugar kelp (Saccharina latissima) to ephemeral algae along the south and west coast of Norway. Mar Biol Res 8:309–321

    Article  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neiva J, Pearson GA, Valero M, Serrão EA (2012) Drifting fronds and drifting alleles: range dynamics, local dispersal and habitat isolation shape the population structure of the estuarine seaweed Fucus ceranoides. J Biogeogr 39:1167–1178

    Article  Google Scholar 

  • Neiva J, Paulino C, Nielsen MM, Krause-Jensen D, Saunders GW, Assis J, Bárbara I, Tamigneaux É, Gouveia L, Aires T, Marbà N, Bruhn A, Pearson GA, Serrão EA (2018) Glacial vicariance drives phylogeographic diversification in the amphi-boreal kelp Saccharina latissima. Sci Rep 8:1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen MM, Paulino C, Neiva J, Krause-Jensen D, Bruhn A, Serrão EA (2016) Genetic diversity of Saccharina latissima (Phaeophyceae) along a salinity gradient in the North Sea–Baltic Sea transition zone. J Phycol 52:523–531

    Article  Google Scholar 

  • Norderhaug KM, Christie HC (2009) Sea urchin grazing and kelp re-vegetation in the NE Atlantic. Mar Biol Res 5:515–528

    Article  Google Scholar 

  • Norderhaug K, Christie H, Fosså J, Fredriksen S (2005) fish–macrofauna interactions in a kelp (Laminaria hyperborea) forest. J Mar Biol Assoc U K 85:1279–1286

    Article  Google Scholar 

  • Norderhaug KM, Nautsvoll L, Ledang AB, Bjerkeng B, Gitmark JK (2011) Sugar kelp monitoring in the coastal regions of Norway. Report for 2009 and 2010. Norwegian Institute for Water Research, NIVA. ISBN 978-82-577-5870-7

  • Norderhaug KM, Anglès d’Auriac MB, Fagerli CW, Gundersen H, Christie H, Dahl K, Hobæk A (2016) Genetic diversity of the NE Atlantic sea urchin Strongylocentrotus droebachiensis unveils chaotic genetic patchiness possibly linked to local selective pressure. Mar Biol 163:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen JL, Zechman FW, Hoarau G, Coyer JA, Stam WT, Valero M, Åberg P (2010) The phylogeographic architecture of the fucoid seaweed Ascophyllum nodosum: an intertidal ‘marine tree’ and survivor of more than one glacial-interglacial cycle. J Biogeogr 37:842–856

    Article  Google Scholar 

  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996

    Article  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  CAS  PubMed  Google Scholar 

  • Paulino C, Neiva J, Coelho NC, Aires T, Marbà N, Krause-Jensen D, Serrão EA (2016) Characterization of 12 polymorphic microsatellite markers in the sugar kelp Saccharina latissima. J Appl Phycol 28:3071–3074

    Article  Google Scholar 

  • Powell A, Treasurer JW, Pooley CL, Keay AJ, Lloyd R, Imsland AK, Garcia de Leaniz C (2018) Use of lumpfish for sea-lice control in salmon farming: challenges and opportunities. Rev Aquacult 10:683–702

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing. R Development Core Team, Vienna

    Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Rinde E, Christie H, Fagerli CW, Bekkby T, Gundersen H, Norderhaug KM, Hjermann D (2014) The influence of physical factors on kelp and sea urchin distribution in previously and still grazed areas in the NE Atlantic. PLoS ONE 9:e100222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robuchon M, Le Gall L, Mauger S, Valero M (2014) Contrasting genetic diversity patterns in two sister kelp species co-distributed along the coast of Brittany, France. Mol Ecol 23:2669–2685

    Article  PubMed  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP ‘007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol Notes 6:600–602

    Article  Google Scholar 

  • Séré M, Thevenon S, Belem AMG, De Meeus T (2017) Comparison of different genetic distances to test isolation by distance between populations. Heredity 119:55–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Siegel DA, Mitarai S, Costello CJ, Gaines SD, Kendall BE, Warner RR, Winters KB (2008) The stochastic nature of larval connectivity among nearshore marine populations. Proc Natl Acad Sci USA 105:8974–8979

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivertsen K (1997) Geographic and environmental factors affecting the distribution of kelp beds and barren grounds and changes in biota associated with kelp reduction at sites along the Norwegian coast. Can J Fish Aquat Sci 54:2872–2887

    Article  Google Scholar 

  • Sjøtun K, Fredriksen S, Lein TE, Rueness J, Sivertsen K (1993) Population studies of Laminaria hyperborea from its northern range of distribution in Norway. Hydrobiologia 260:215–221

    Article  Google Scholar 

  • Skiftesvik AB, Blom G, Agnalt A-L, Durif CMF, Browman HI, Bjelland RM, Harkestad LS, Farestveit E, Paulsen OI, Fauske M, Havelin T, Johnsen K, Mortensen S (2014) Wrasse (Labridae) as cleaner fish in salmonid aquaculture—the Hardangerfjord as a case study. Mar Biol Res 10:289–300

    Article  Google Scholar 

  • Snirc A, Silberfeld T, Bonnet J, Tillier A, Tuffet S, Sun JS (2010) Optimization of DNA extraction from brown algae (Phaeophyceae) based on a commercial kit. J Phycol 46:616–621

    Article  CAS  Google Scholar 

  • Sogn Andersen G (2013) Patterns of Saccharina latissima recruitment. PLoS ONE 8:e81092

    Article  PubMed  Google Scholar 

  • Sogn Andersen G, Steen H, Christie H, Fredriksen S, Moy FE (2011) Seasonal patterns of sporophyte growth, fertility, fouling, and mortality of Saccharina latissima in Skagerrak, Norway: Implications for forest recovery. J Mar Biol 2011:690375

    Article  Google Scholar 

  • Tellier F, Meynard AP, Correa JA, Faugeron S, Valero M (2009) Phylogeographic analyses of the 30°S south-east Pacific biogeographic transition zone establish the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: Vicariance or parapatry? Mol Phylogenetics Evol 53:679–693

    Article  CAS  Google Scholar 

  • Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genet 144:389–399

    CAS  Google Scholar 

  • Thaulow J, Borgstrøm R, Heun M (2013) Brown trout population structure highly affected by multiple stocking and river diversion in a high mountain national park. Conserv Genet 14:145–158

    Article  Google Scholar 

  • Valero M, Destombe C, Mauger S, Ribout C, Engel CR, Daguin-Thiébaut C, Tellier F (2011) Using genetic tools for sustainable management of kelps: a literature review and the example of Laminaria digitata. Cah Biol Mar 52:467–483

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Vásquez JA (2009) Production, use and fate of Chilean brown seaweeds: re-sources for a sustainable fishery. In: Borowitzka MA, Critchley AT, Kraan S, Peters A, Sjøtun K, Notoya M (eds) Nineteenth International Seaweed Symposium: Proceedings of the 19th International Seaweed Symposium, held in Kobe, Japan, 26–31 March, 2007. Springer Netherlands, Dordrecht. pp 7–17

  • Wang G, Tan X, Shen J, Li J, Zhang L, Sun J, Wang B, Weng M, Liu T (2011) Development of EST-SSR primers and their practicability test for Laminaria. Acta Oceanol Sin 30:111–112

    CAS  Google Scholar 

  • Water Regulation (2016) Norwegian Water Management Regulation of 15 December 2006 No.1446 on the framework for Water Regulation

  • Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106:12377–12381

    Article  PubMed  PubMed Central  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Wernberg T, Coleman MA, Bennett S, Thomsen MS, Tuya F, Kelaher BP (2018) Genetic diversity and kelp forest vulnerability to climatic stress. Sci Rep 8:1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahlund S (1928) Zusammensetzung von Population und Korrelationserscheinung von Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11:65–106

    Article  Google Scholar 

  • White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, Toonen RJ (2010) Ocean currents help explain population genetic structure. Proc Royal Soc B 277:1685–1694

    Article  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Zhang L, Tao Y, Guo L, Sun J, Li X, Zhao N, Peng J, Li X, Zeng L, Chen J, Yang G (2015) Construction of a high density SNP linkage map of kelp (Saccharina japonica) by sequencing Taq I site associated DNA and mapping of sex determining locus. BMC Genom 16:189–200

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Janne Gitmark and Eli Rinde (NIVA) and Tove Gabrielsen (UNIS) for helping with the sample collection, James Coyer (UNH) for helping with sample extraction, and J. Guzinski, S. Mauger, J.M. Cock, and M. Valero for sharing the primer information prior to publishing in 2016. Two anonymous reviewers are acknowledged for valuable suggestions to improve the manuscript. Funding is acknowledged from The Nansen Fund; Systematics Research Fund; Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo; Norwegian Institute for Water Research (NIVA), and The Research Council of Norway (KELPPRO, Grant # 267536 to KH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Thaulow.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evankow, A., Christie, H., Hancke, K. et al. Genetic heterogeneity of two bioeconomically important kelp species along the Norwegian coast. Conserv Genet 20, 615–628 (2019). https://doi.org/10.1007/s10592-019-01162-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-019-01162-8

Keywords

Navigation