Skip to main content

Advertisement

Log in

Genetic structure, diversity, and hybridization in populations of the rare arctic relict Euphrasia hudsoniana (Orobanchaceae) and its invasive congener Euphrasia stricta

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Arctic relict populations, which persist in disjunct locations far south of a species’ normal range, are at the frontline of climate change and may be especially susceptible to the negative impacts of climate warming. Further, these relict populations may face increasing contact with, or become outcompeted by, invasive species if the invasive taxa are spreading along with the warming climate. Relict populations are simultaneously of particular conservation importance due to their unique genetic make-up and potential for adaptations to warmer temperatures compared to populations at the core of the species range. In this study, we used genotyping-by-sequencing to study the population genetics of Euphrasia hudsoniana, a polyploid arctic disjunct of conservation concern, at the southern edge of its range along the northwestern shore of Lake Superior. In addition, we examined evidence for hybridization with its invasive congener, E. stricta. Overall, we found clear differentiation between the native and invasive species indicated by nearly all analyses. There was limited evidence for gene flow from the invasive into the native species, but patterns were consistent with more extensive gene flow in the opposite direction. Differentiation among native populations was low, yet two of the five populations fell into a separate, distinct group based on STRUCTURE analyses. Continued genetic monitoring of these populations will help elucidate whether hybridization with invasives is a burgeoning threat for this arctic relict.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott RJ, Brochmann C (2003) History and evolution of the arctic flora: in the footsteps of Eric Hultén. Mol Ecol 12:299–313

    Article  PubMed  Google Scholar 

  • Bauert MR, KÄLin M, Baltisberger M, Edwards PJ (1998) No genetic variation detected within isolated relict populations of Saxifraga cernua in the Alps using RAPD markers. Mol Ecol 7:1519–1527

    Article  CAS  Google Scholar 

  • Billings WD, Mooney HA (1968) The ecology of arctic and alpine plants. Biol Rev 43:481–529

    Article  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Brochmann C, Steen SW (1999) Sex and genes in the flora of Svalbard—implications for conservation biology and climate change. Det Norske Videnskaps-Akademi I Matematisk-Naturvitenskapelig Klasse Skrifter, Ny Serie 38:33–72

    Google Scholar 

  • Clevenger JP, Ozias-Akins P (2015) SWEEP: a tool for filtering high-quality SNPs in polyploid crops. G3 5:1797–1803. doi:10.1534/g3.115.019703

    Article  PubMed  PubMed Central  Google Scholar 

  • Currat M, Ruedi M, Petit RJ, Excoffier L (2008) The hidden side of invasions: massive introgression by local genes. Evol Int J Org Evol 62:1908–1920

    Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158. doi:10.1093/bioinformatics/btr330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis MB, Shaw RG, Etterson JR (2005) Evolutionary responses to changing climate. Ecology 86:1704–1714

    Article  Google Scholar 

  • Doak DF, Morris WF (2010) Demographic compensation and tipping points in climate-induced range shifts. Nature 467:959–962

    Article  CAS  PubMed  Google Scholar 

  • Downie SR, McNeill J (1988) Description and distribution of Euphrasia stricta in North America. Rhodora 90:223–231

    Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Evol Syst 24:217–242

    Article  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE. doi:10.1371/journal.pone.0019379

    PubMed  PubMed Central  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • French GC, Ennos RA, Silverside AJ, Hollingsworth PM (2005) The relationship between flower size, inbreeding coefficient and inferred selfing rate in British Euphrasia species. Heredity 94:44–51

    Article  CAS  PubMed  Google Scholar 

  • Given DR, Soper JH (1981) The artic-alpine element of the vascular flora at lake superior. National Museum of Natural Resources Publications in Botany, No. 10

  • Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9:e90346

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomert Z, Buerkle CA (2009) A powerful regression-based method for admixture mapping of isolation across the genome of hybrids. Mol Ecol 18:1207–1224

    Article  Google Scholar 

  • Gomert Z, Buerkle CA (2010) introgress: a software package for mapping components of isolation in hybrids. Mol Ecol Resour 10:378–384

    Article  Google Scholar 

  • Gross BL, Rieseberg LH (2005) The ecological genetics of homoploid hybrid speciation. J Hered 96:241–252

    Article  CAS  PubMed  Google Scholar 

  • Gusarova G, Popp M, Vitek E, Brochmann C (2008) Molecular phylogeny and biogeography of the bipolar Euphrasia (Orobanchaceae): recent radiations in an old genus. Mol Phylogenet Evol 48:444–460

    Article  Google Scholar 

  • Hampe A, Jump AS (2011) Climate relicts: past, present, future. Annu Rev Ecol Evol Syst 42:313–333

    Article  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  PubMed  Google Scholar 

  • Hegland SJ, Totland Ø (2012) Interactions for pollinator visitation and their consequences for reproduction in a plant community. Acta Oecol 43:95–103

    Article  Google Scholar 

  • Holsbeek G, Mergeay J, Hotz H, Plotner J, Volckaert FA, De Meester L (2008) A cryptic invasion within an invasion and widespread introgression in the European water frog complex: consequences of uncontrolled commercial trade and weak international legislation. Mol Ecol 17:5023–5035

    Article  CAS  PubMed  Google Scholar 

  • Huff A, Thomas A (2014) Lake Superior climate change impacts and adaptation. Prepared for the Lake Superior Lakewide Action and Management Plan – Superior Work Group

  • Johnson MG, Lang K, Manos P, Golet GH, Schierenbeck KA (2016) Evidence for genetic erosion of a California native tree, Platanus racemosa, via recent, ongoing introgressive hybridization with an introduced ornamental species. Conserv Genet 17:593–602

    Article  Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. doi:10.1093/molbev/msw054

    PubMed Central  Google Scholar 

  • Lesica P, McCune B (2004) Decline of arctic-alpine plants at the southern margin of their range following a decade of climatic warming. J Veg Sci 15:679–690

    Article  Google Scholar 

  • Liebst B (2008) Do they really hybridize? A field study in artificially established mixed populations of Euphrasia minima and E. salisburgensis (Orobanchaceae) in the Swiss Alps. Plant Syst Evol 273:179–189

    Article  Google Scholar 

  • Liebst B, Schneller J (2005) How selfing and intra-and interspecific crossing influence seed set, morphology and ploidy level in Euphrasia: an experimental study of species occurring in the Alps of Switzerland. Plant Syst Evol 255:193–214

    Article  Google Scholar 

  • Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucek K (2016) Cryptic invasion drives phenotypic changes in central European threespine stickleback. Conserv Genet 17:993–999

    Article  Google Scholar 

  • McAllister CA, Miller AJ (2016) Single nucleotide polymorphism discovery via genotyping by sequencing to assess population genetic structure and recurrent polyploidization in Andropogon gerardii. Am J Bot 103:1314–1325

    Article  PubMed  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2013) The effects of inheritance in tetraploids on genetic diversity and population divergence. Heredity 110:131–137

    Article  CAS  PubMed  Google Scholar 

  • MN DNR (2016) Euphrasia hudsoniana var. ramosior. Minnesota’s endangered, threatened, and special concern species: rare species guide. http://www.dnr.state.mn.us/rsg/profile.html?action=elementDetailandselectedElement=PDSCR0P053

  • Nimis P, Malyshev L, Bolognini G, Friesen N (1998) A multivariate phytogeographic analysis of plant diversity in the Putorana Plateau (N. Siberia). Opera Bot 136:1–72

    Google Scholar 

  • Owens GL, Baute GJ, Rieseberg LH (2016) Revisiting a classic case of introgression: hybridization and gene flow in Californian sunflowers. Mol Ecol 25:2630–2643

    Article  PubMed  Google Scholar 

  • Pembleton LW, Cogan NO, Forster JW (2013) StAMPP: an R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol Ecol Resour 13:946–952

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Reznicek AA, Voss EG, Walters BS (2011) Michigan Flora Online. University of Michigan. Web. August 11, 2016. http://michiganflora.net/species.aspx?id=1865

  • Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Evol Syst 27:83–109

    Article  Google Scholar 

  • Rieseberg LH (1997) Hybrid origins of plant species. Annu Rev Ecol Evol Syst 28:359–389

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci USA 99:2445–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sell PD, Yeo PF (1970) A revision of the North American species of Euphrasia L. (Scrophulariaceae). Bot J Linn Soc 63:189–234

    Article  Google Scholar 

  • Smith W (1988) Vascular plants, Chapter 1. In: Coffin B, Pfannmuller L (eds) Minnesota’s endangered flora and fauna. University of Minnesota Press, Minneapolis, p 185

    Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thuiller W, Richardson DM, Midgley GF (2007) Will climate change promote alien plant invasions? In: Nentwig W (ed) Biological invasions. Springer, New York, pp 197–211

    Chapter  Google Scholar 

  • Todesco M, Pascual MA, Owens GL, Ostevik KL, Moyers BT, Hübner S, Heredia SM, Hahn MA, Caseys C, Bock DG, Rieseberg LH (2016) Hybridization and extinction. Evol Appl 9:892–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler KJ, Etterson JR (2015) Natural selection in populations of Euphrasia hudsoniana var. ramosior along the north shore of Lake Superior. Technical report for Minnesota’s Lake Superior Coastal Program

  • Yeo PF (1968) The evolutionary significance of the speciation of Euphrasia in Europe. Evolution 22:736–747. doi:10.2307/2406899

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge L. Gerdes and G. Gusarova for sharing their expertise on Euphrasia species, M Cleveland, A McCormick, the Grand Portage Band of Lake Superior Chippewa, the Minnesota Department of Natural Resources, and United States Forest Service for facilitating or providing permission to collect samples, J. Manolis for assistance collecting samples, A. Boser, J. Horky, A. Schumann, and M. Wedger for lab support, the Gross, Strasburg, and Etterson labs, and two anonymous reviewers for helpful comments on this manuscript. This work was funded in part by the Coastal Zone Management Act of 1972, as amended, administered by the Office for Coastal Management, National Oceanic and Atmospheric Administration under Award NA14NOS4190055 provided to the Minnesota Department of Natural Resources for Minnesota’s Lake Superior Coastal Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharine J. Zlonis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10592_2017_995_MOESM1_ESM.tif

Fig S1. MDS analysis of SNP data, filtered separately for each species then merged (196 SNPs), for a) Euphrasia hudsoniana and Euphrasia stricta individuals sampled from five and two populations respectively along the north shore of Lake Superior and b) the E. hudsoniana individuals only. The first two principal coordinates are plotted. (TIF 38300 KB)

10592_2017_995_MOESM2_ESM.tif

Fig S2. Neighbor joining tree based on SNPs filtered separately for each species then merged (196 SNPs), for a) Euphrasia hudsoniana and Euphrasia stricta individuals sampled from five and two populations respectively and b) E. hudsoniana individuals only. Bootstrap values greater than 0.5 are shown. (TIF 74414 KB)

10592_2017_995_MOESM3_ESM.tif

Fig S3. Delta K values for putative clusters of Euphrasia hudsoniana and E. stricta individuals (a) and E. hudsoniana individuals (b) (‘filtered together’ dataset; 972 SNPs). Delta K = mean(|L”(K)|)/sd(L(K)). (TIF 23852 KB)

10592_2017_995_MOESM4_ESM.tif

Fig S4. STRUCTURE results based on SNP data filtered separately for each species then merged (196 SNPs) for best supported values of K for a) Euphrasia hudsoniana and Euphrasia stricta individuals sampled from five and two populations respectively (K=2) and b) Euphrasia hudsoniana individuals (K=2). (TIF 24219 KB)

10592_2017_995_MOESM5_ESM.tif

Fig S5. Neighbor joining tree based on SNPs ‘filtered together’ (972 SNPs) for a) Euphrasia hudsoniana and E. stricta individuals sampled from five and two populations respectively and b) E. hudsoniana individuals only. Bootstrap values greater than 0.5 are shown. (TIF 74477 KB)

Supplementary material 6 (PDF 115 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zlonis, K.J., Gross, B.L. Genetic structure, diversity, and hybridization in populations of the rare arctic relict Euphrasia hudsoniana (Orobanchaceae) and its invasive congener Euphrasia stricta . Conserv Genet 19, 43–55 (2018). https://doi.org/10.1007/s10592-017-0995-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-017-0995-x

Keywords

Navigation