Skip to main content

Advertisement

Log in

Unique and isolated: population structure has implications for management of the endangered New Zealand sea lion

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Female otariids (eared seals) frequently display strong levels of philopatry, a behaviour that has the potential to influence population structure, particularly at the mitochondrial level. Conversely, male otariids often move between breeding colonies, likely facilitating nuclear gene flow between colonies. Such gender-specific movements have the potential to influence species population structure. Here we investigate the genetic population structure of the endangered New Zealand (NZ) sea lion, using nuclear (microsatellite) and mitochondrial molecular markers, with the intention to better inform conservation through identification of management units for the species. The strong levels of female philopatry in this species have potential to lead to population structure at the mitochondrial loci. In contrast, weak or no population structure is expected across nuclear loci. NZ sea lions were sampled from the main breeding areas across the species’ current distribution (three Auckland Islands sites, two Campbell Island sites, one Stewart Island site and one Otago Peninsula site). Individuals were screened for microsatellite (n = 271; 16 loci) and mitochondrial (n = 56; 1027 bp D-loop and 1189 bp cytb). Despite a small (c. 9880 individuals) population size, moderate levels of microsatellite variation are observed in the NZ sea lions, in contrast to low levels of mitochondrial genetic variation. Results from mitochondrial DNA analyses revealed no population structure, suggesting that the strong level of female philopatry in NZ sea lions alone is not sufficient to maintain genetic population structure. Due to the frequent male movements between breeding colonies, no population structure was detected across the nuclear loci either. The absence of genetic structure suggests that, from a genetic perspective, NZ sea lions can be considered to be a single population. Despite this, the differing impacts of threats (e.g. fisheries by-catch) to each individual breeding colony must also be taken into consideration when defining management units for this endangered species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acevedo-Whitehouse K, Petetti L, Duignan P, Castinel A (2009) Hookworm infection, anaemia and genetic variability of the New Zealand sea lion. Proc Biol Sci 276(1672):3523–3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akroyd J, Pilling G (2013) Surveillance Report Wouthern Blue Whiting Fishery. Intertek Moody Marine

  • Allen P, Amos W, Pomroy PP, Twiss SD (1995) Microsatellite variation in grey seals (Halichoerus grypus) shows evidence of genetic differentiation between two British breeding colonies. Mol Ecol 4:653–662

    Article  CAS  PubMed  Google Scholar 

  • Baker CS, Chilvers BL, Constantine R, DuFresne S, Mattlin R, van Helden A, Hitchmough R (2010) Conservation status of New Zealand marine mammals (suborders Cetacea and Pinnipedia), 2009. NZ J Mar Freshwat Res 44:101–115

    Article  Google Scholar 

  • Bernardi G, Fain SR, Gallo-Reynoso JP, Figueroa-Carranza AL, Boeuf BJ (1998) Genetic variability in Guadalupe fur seals. J Hered 89:301–305

    Article  CAS  PubMed  Google Scholar 

  • Berry O, Spiller LC, Campbell R, Hitchen Y, Kennington WJ (2012) Population recovery of the New Zealand fur seal in southern Australia: a molecular DNA analysis. J Mammal 93:482–490

    Article  Google Scholar 

  • Bickham JW, Patton JC, Loughlin TR (1996) High variability for control-region sequences in a marine mammal: implications for conservation and biogeography of Stellar sea lions (Eumetopias jubatus). J Mammal 77:95–108

    Article  Google Scholar 

  • Boyd IL (1991) Environmental and physiological factors controlling the reproductive cycles of pinnipeds. Can J Zool 69:1135–1148

    Article  Google Scholar 

  • Bradshaw CJA, Harcourt RG, Davis LS (2003) Male-biased sex ratios in New Zealand fur seal pups relative to environmental variation. Behav Ecol Sociobiol 53:1083–1085

    Google Scholar 

  • Bradshaw CJA, Haddon M, Lonergan M (2013) Review of models and data underpinning the management of fishing-related mortality of New Zealand sea lions (Phocarctos hookeri), in the SQU6T trawl fishery. Ministry for Primary Industries, Wellington, New Zealand

  • Breen PA, Hilborn R, Maunder MN, Kim SW (2003) Effects of alternative control rules on the conflict between a fishery and a threatened sea lion (Phocarctos hookeri). Can J Fish Aquat Sci 60:527–541

    Article  Google Scholar 

  • Breen PA, Fu D, Gilbert DJ (2010) Sea lion population modelling and management procedure evaluations: Report for Project SAP2008/14, Objective 2. Presented to AEWG March 22 2010, Wellington, New Zealand

  • Buchanan FC, Maiers LD, Thue TD, De March BGE, Stewart REA (1998) Microsatellites from the Atlantic walrus Odobenus rosmarus rosmarus. Mol Ecol 7:1083–1085

    Article  CAS  PubMed  Google Scholar 

  • Cameron MF, Donald BS, Proffitt KM, Garrott RA (2007) Site fidelity of Weddell seals: the effects of sex and age. Antarct Sci 19:149–155

    Article  Google Scholar 

  • Campbell RA, Gales NJ, Lento GM, Baker CS (2008) Islands in the sea: extreme female natal site fidelity in the Australian sea lion, Neophoca cinerea. Biol Lett 4:139–142

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Durand E, Forbes F, Francois O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7:747–756

    Article  Google Scholar 

  • Childerhouse S, Gales N (1998) Historical and modern distribution and abundance of the New Zealand sea lion Phocarctos hookeri. NZ J Zool 25:1–16

    Article  Google Scholar 

  • Childerhouse S, Hamer D, Maloney A, Michael S, Donnelly D, Schmitt N (2014) Preliminary report for CSP project 4522 New Zealand sea lion ground component 2013/14. New Zealand Department of Conservation.

  • Childerhouse S, Michael S, Adams L, Burns T, Cockburn S, Hamer D, Maloney A, Pugsley C (2015) Final Report: New Zealand sea lion research at the Auckland Islands 2014/15. Unpublished report to the Conservation Services, Blue Planet Marine, Nelson, New Zealand

  • Chilvers BL (2009) Foraging locations of female New Zealand sea lions (Phocarctos hookeri) from a declining colony. N Z J Ecol 33:103–116

    Google Scholar 

  • Chilvers BL (2012) Population viability analysis of New Zealand sea lions, Auckland Islands, New Zealand’s sub-Antarctics: assessing relative impacts and uncertainty. Polar Biol 35:1607–1615

    Article  Google Scholar 

  • Chilvers BL (2015) Phocarctos hookeri. In: IUCN red list of threatened species (IUCN 2015), Version 2015.2. http://www.iucn-redlist.org. Accessed 30 July 2015

  • Chilvers BL, Wilkinson IS (2008) Philopatry and site fidelity of New Zealand sea lions (Phocarctos hookeri). Wildl Res 35:463–470

    Article  Google Scholar 

  • Chilvers BL, Meyer S (2017) Conservation needs for the endangered New Zealand sea lion, Phocarctos hookeri. Aquat Conserv. doi:10.1002/aqc.2742

  • Chilvers BL, Wilkinson IS, Childerhouse S (2007) New Zealand sea lion, Phocarctos hookeri, pup production—1995 to 2006. NZ J Mar Freshwat Res 41:205–213

    Article  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Collins CJ, Rawlence NJ, Worthy TH, Scofiels RP, Tennyson AJD, Smith I, Knapp M, Waters JM (2014a) Pre-human New Zealand sea lion (Phocarctos hookeri) rookeries on mainland New Zealand. J Royal Soc NZ 44: 1–16

    Article  Google Scholar 

  • Collins CJ, Rawlence NJ, Knapp M, Scofield RP, Robertson BC, Smith IWG, Matisoo-Smith E, Chilvers BL, Waters JM (2014b) Extinction and recolonisation of coastal megafauna following human arrival in New Zealand. Proc Biol Sci 281:20140097

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins CJ, Chilvers BL, Taylor M, Robertson BC (2016) Historical population size of the threatened New Zealand sea lion Phocarctos hookeri. J Mammal 97:436–443

    Article  Google Scholar 

  • Coltman DW, Bowen WD, Wright JM (1996) PCR primers for harbour seal (Phoca vitulina concolour) microsatellites amplify polymorphic loci in other pinniped species. Mol Ecol 5:161–163

    Article  CAS  PubMed  Google Scholar 

  • Davis CS, Gelatt TS, Siniff D, Strobeck A (2002) Dinucleotide microsatellite markers from the Antarctic seals and their use in other Pinnipeds. Mol Ecol Notes 2:203–208

    CAS  Google Scholar 

  • Davis CS, Stirling I, Strobeck C, Coltman DW (2008) Population structure of ice-breeding seals. Mol Ecol 17:3078–3094

    Article  PubMed  Google Scholar 

  • de Oliveira LR, Hoffman JI, Hingst-Zaher E, Majluf P, Muelbert MMC, Morgante JS, Amos W (2007) Morphological and genetic evidence for two evolutionary significant units (ESUs) in the South American fur seal, Arctocephalus australis. Conserv Genet 9:1451–1466

    Article  Google Scholar 

  • de Oliveira LR, De Castro RL, Cardenas-Alayza S, Bonatto SL (2012) Conservation genetics of South American aquatic mammals: an overview of gene diversity, population strucutre, phylogeography, non-invasive methods and forensics. Mammal Rev 42:275–303

    Article  Google Scholar 

  • Dickerson BR, Ream RR, Vignieri SN, Bentzen P (2010) Population structure as revealed by mtDNA and microsatellites in northern fur seals, Callorhinus ursinus, throughout their range. PLoS ONE 5:e10671

    Article  PubMed  PubMed Central  Google Scholar 

  • DoC (2009) New Zealand sea lion species management plan: 2009–2014. Department of Conservation, Wellington, New Zealand

  • Drummond A, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S et al (2011) Geneious

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolut Bioinform 1:47–50

    CAS  Google Scholar 

  • Fay JC, Wu CI (1999) A human population bottleneck can account for the discordance between patterns of mitochondrial versus nuclear DNA variation. Mol Biol Evol 16:1003–1005

    Article  CAS  PubMed  Google Scholar 

  • Feijoo M, Lessa EP, de Castro RL, Crespo EA (2011) Mitochondrial and microsatellite assessment of population structure of South American sea lion (Otaria flavescens) in the Southwestern Atlantic Ocean. Marine Biol 158:1857–1867

    Article  Google Scholar 

  • French R (2015) Campbell Island population survey of New Zealand sea lion Phocarctos hookeri. Unpublished Allan Wilson Centre summer studentship report, University of Otago, Dunedin, New Zealand

  • Geschke K, Chilvers BL (2009) Managing big boys: a case study on remote anaesthesia and satellite tracking of adult male New Zealand sea lions (Phocarctos hookeri). Wildl Res 36:666–674

    Article  Google Scholar 

  • Goldsworthy S, Francis J, Boness D, Fleischer R (2000) Variation in the mitochondrial control region in the Juan Fernandez fur seal (Arctocephalus philippii). J Hered 91:371–377

    Article  CAS  PubMed  Google Scholar 

  • Goodman SJ (1997) Dinucleotide repeat polymorphisms at seven anonymous microsatellite loci cloned from the European harbour seal (Phoca vitulina vitulina). Anim Genet 28:310–311

    CAS  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Hernandez-Velazquez FD, Galindo-Sanchez CE, Taylor MI, de la Rosa-Velez J, Cote IM, Schramm Y, Aurioles-Gamboa D, Rico C (2005) New polymorphic microsatellite markers for California sea lions (Zalophus californianus). Mol Ecol Notes 5:140–142

    Article  CAS  Google Scholar 

  • Hoffman EA, Amos W (2005) Microsatellite genotyping errors: detection approaches and consequences for paternal exclusion. Mol Ecol 14:599–612

    Article  CAS  PubMed  Google Scholar 

  • Hoffman JI, Forcada J (2012) Extreme natal site philopatry in female Antarctic fur seals. Mamm Biol 77:71–73

    Article  Google Scholar 

  • Hoffman EA, Matson CW, Amos M, Loughlin TR, Bickham JW (2006) Deep genetic subdivision within a continuously distributed and highly vagile marine mammal, the Stellar’s sea lion (Eumetopias jubatus). Mol Ecol 15:2821–2832

    Article  CAS  PubMed  Google Scholar 

  • Hoffman JI, Steinfartz S, Wolf JBW (2007) Ten novel dinucleotide microsatellite loci cloned from the Galápagos sea lion (Zalophus californianus wollebaeki) are polymorphic in other pinniped species. Mol Ecol Notes 7:103–105

    Article  CAS  Google Scholar 

  • Jemison LA, Pendleton GW, Fritz LW, Hastings KK, Maniscalo JM, Trites AW, Gelatt TS (2013) Inter-population movements of Steller sea lions in Alaska with implications for population separation. Plos ONE 8:e70167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Lancaster ML, Arnould JPY, Kirkwood R (2010) Genetic status of an endemic marine mammal, the Australian fur seal, following historic harvesting. Anim Conserv 12:402–413

    Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilim A, Lopez R et al (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lento GM, Haddon M, Chambers GK, Baker CS (1997) Genetic variation of southern hemisphere fur seals (Arctocephalus spp.): investigation of population structure and species identity. J Hered 88:202–208

    Article  CAS  PubMed  Google Scholar 

  • Lopes F, Hoffman JI, Valiati VH, Bonatto SL, Wolf JBW, Trillmich F, Oliveira LR (2015) Fine-scale matrilineal populaiton structure in the Galapagos fur seal and its implications for conservation management. Conserv Genet 16:1099–1113

    Article  Google Scholar 

  • Lynch M, Ritlan K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Majluf P, Goebel ME 1992. The capture and handling of female South American fur seals and their pups. Mar Mamm Sci 8:187–190

    Article  Google Scholar 

  • Maldonado JE, Davila FO, Steart BS, Geffen E, Wayne RK (1995) Intraspecific genetic differentiation in California sea lions (Zalophus californianus) from southern California and the Gulf of California. Mar Mamm Sci 11:46–58

    Article  Google Scholar 

  • Maloney A, Chilvers BL, Muller CG, Haley M (2012) Increasing pup production of New Zealand sea lions at Campbell Island/Motu Ihupuku: can it continue? New Zealand. J Zool 39:19–29

    Google Scholar 

  • Manel S, Bellemain E, Swenson JE, Francois O (2004) Assumed and inferred spatial structure of populations: the Scandinavian brown bears revisited. Mol Ecol 13:1327–1331

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Cruz B, Godoy JA, Negro JJ (2004) Population genetivs after fragmentation: the case of the endangered Spanish imperial eagle (Aquila adalberti). Mol Ecol 13:2243–2255

    Article  PubMed  Google Scholar 

  • Matthee CA, Fourie F, Oosthuizen WH, Meyer MA, Tolley KA (2006) Mitochondrial DNA sequence data of the Cape fur seal (Arctocephalus pusillus pusillus) suggest that population numbers may be affected by climatic shifts. Mar Biol 148:899–905

    Article  CAS  Google Scholar 

  • McConkey S, McConnell H, Lalas C, Heinrich S, Ludmerer A, McNally N, Parker E, Borofsky C, Schimanski K, McIntosh G 2002. A northward spread in the breeding distribution of the New Zealand sea lion Phocarctos hookeri. Aust Mammal 24:97–106

    Article  Google Scholar 

  • Meyer S, Robertson BC, Chilvers BL, Krkošek M (2015) Population dynamics reveal conservation priorities of the threatened New Zealand sea lion Phocarctos hookeri. Mar Biol 162:1587–1596

    Article  Google Scholar 

  • Moritz C (1994) Defining evolutionarily-significant-units for conservation. Trends Ecol Evol 9:373–375

    Article  CAS  PubMed  Google Scholar 

  • MPI (2013) Aquatic environment and biodiversity annual review 2013. Fisheries Management Science Team, Ministry for Primary Industries, Wellington, New Zealand, 583 p

  • MPI (2015) New Zealand sea lion (Phocarctos hookeri). In: Aquatic environment and biodiversity annual review (2015). Pp. 18–52

  • Olsen MT, Andersen LW, Dietz R, Teilmann J, Härkönen T, Siegismund HR (2014) Integrating genetic data and population viability analyses for the identification of harbour seal (Phoca vitulina) Popul Manage Units 23:815–831

    Google Scholar 

  • Osborne AJ, Zavodna M, Chilvers BL, Robertson BC, Negro SS, Kennedy MA, Gemmell NJ (2013) Extensive variation at MHC DRB in the New Zealand sea lion (Phocarctos hookeri) provides evidence for balancing selection. Heredity 111:44–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne AJ, Negro SS, Chilvers BL, Robertson BC, Kennedy MA, Gemmell NJ (2016) Genetic evidence of a population bottleneck and inbreeding in the endangered New Zealand sea lion, Phocarctos hookeri. J Hered 107:392–402

    Article  PubMed  Google Scholar 

  • Paetkau D, Strobeck C (1994) Microsatellite analysis of genetic-variation in black bear populations. Mol Ecol 3:489–495

    Article  CAS  PubMed  Google Scholar 

  • Palsbøll PJ, Bérubé M, Allendorf FW (2006) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Populaion genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  CAS  PubMed  Google Scholar 

  • Pomeroy PP, Twiss SD, Redman P (2000) Philopatry, site fidelity and local kin associations within Grey Seal breeding colonies. Ethology 106:899–919

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rambaut A, Drummond AJ (2009) Tracer v1.5

  • Raymond M, Rousset F (1995) Genepop (Version-1.2) - population-genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Robertson BC (2015) Comment on “Review of research and assessments on the efficacy of sea lion exclusion devices in reducing the incidental mortality of New Zealand sea lions Phocarctos hookeri in the Auckland Islands squid trawl fishery”. Fish Res 165:127–129

    Article  Google Scholar 

  • Robertson BC, Chilvers BL (2011) The population decline of the New Zealand sea lion Phocarctos hookeri: a review of possible causes. Mamm Rev 41:253–275

    Article  Google Scholar 

  • Robertson BC, Gemmell NJ (2005) Microsatellite DNA markers for the study of population structure in the New Zealand fur seal Arctocephalus forsteri. DOC Science Internal Series 196. Department of Conservation, Wellington, New Zealand

  • Robertson BC, Chilvers BL, Duignan PJ, Wilkinson IS, Gemmell NJ (2006) Dispersal of breeding, adult male Phocarctos hookeri: Implications for disease transmission, population management and species recovery. Biol Conserv 127:227–236

    Article  Google Scholar 

  • Schramm Y, Mesnick SL, de la Rosa J, Palacios DM, Lowry MS, Aurioles-Gamboa D, Snell HM, Escorza-Trevino S (2009) Phylogeography of California and Galapogas sea lions and population structure within the California sea lion. Mar Biol 156:1375–1387

    Article  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Smith I (1985) Sea mammal hunting and prehistoric subsistence in New Zealand. Unpublished thesis, University of Otago, Dunedin

  • Starke J (1986) Journal of a rambler; the journal of John Boultbee. Oxford University Press, Auckland

    Google Scholar 

  • Taylor AC, Sherwin WB, Wayne R (1994) Genetic variation of microsatellite loci in a bottleneckd species: the norther hairy-nosed wombat Lasiorhinus krefftii. Mol Ecol 3:277–290

    Article  CAS  PubMed  Google Scholar 

  • Tunez JI, Centron D, Cappozo HL, Cassini MH (2007) Geographic distribution and diversity of mitochondrial DNA haplotypes in South Amerivan sea lions (Otaria flavescens) and fur seals (Arctocephalus australis). Mamm Biol 72:193–203

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Walsh SP, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    CAS  PubMed  Google Scholar 

  • Waters JM, Epifanio JM, Gunter T, Brown BL (2000) Homing behaviour facilitates subtle genetic differentiation among river populations of Alosa sapidissima: microsatellites and mtDNA. J Fish Biol 56:622–636

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

  • Wolf JBW, Tautz D, Caccone A, Steinfartz S (2005) Development of new microsatellite loci and evaluation of loci from other pinniped species for the Galápogas sea lion (Zalophus californianus wollebaeki). Conserv Genet 7:461–465

    Article  Google Scholar 

  • Wolf JBW, Harrod C, Brunner S, Salazar S, Trillmich F, Tautz D (2008) Tracing early stages of species differentiation: ecological, morphological and genetic divergences of Galapagos sea lion populations. BMC Evol Biol 8:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Wynen LP, Goldsworthy SD, Guiney C, Bester MN, Boyd IL, Gjertz I, Hofmeyr GJG, White RWG, Slade R (2000) Postsealing genetic variation and population structure of two species of fur seal (Arctocephalus gazella and A. tropicalis). Mol Ecol 9:299–314

    Article  CAS  PubMed  Google Scholar 

  • Yannic G, St-Laurent M-H, Ortgeo J, Taillon J, Beauchemin A, Bernatchez L, Dussault C, Côté SD (2016) Integrating ecological and genetic structure to define management units for caribou in Eastern Canada. Conserv Genet 17:437–453

    Article  Google Scholar 

Download references

Acknowledgements

Modern P. hookeri samples were collected with funding from DoC with approval for sample collection from the DoC Animal Ethics Committee (Approvals AEC 200 2009, AEC 159, AEC 174, AEC 232). Funding for the collection of modern P. hookeri samples was provided by a New Zealand Department of Conservation Grant (DoC Inv 4219). We thank Fiona Robertson for assistance with collection of this data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine J. Collins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 538 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collins, C.J., Chilvers, B.L., Osborne, A. et al. Unique and isolated: population structure has implications for management of the endangered New Zealand sea lion. Conserv Genet 18, 1177–1189 (2017). https://doi.org/10.1007/s10592-017-0969-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-017-0969-z

Keywords

Navigation