Skip to main content

Advertisement

Log in

Combining genetic structure and demographic analyses to estimate persistence in endangered Key deer (Odocoileus virginianus clavium)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Recent improvements in genetic analyses have paved the way in using molecular data to answer questions regarding evolutionary history, genetic structure, and demography. Key deer are a federally endangered subspecies assumed to be genetically unique, homogeneous, and have a female-biased population of approximately 900 deer. We used 985 bp of the mitochondrial cytochrome b gene and 12 microsatellite loci to test two hypotheses: (1) that Key deer are isolated and have reduced diversity compared to mainland deer and (2) that isolation of the Florida Keys has led to a small population size and a high risk of extinction. Our results indicate that Key deer are indeed genetically isolated from mainland white-tailed deer and that there is a lack of genetic substructure between islands. While Key deer exhibit reduced levels of genetic diversity compared to their mainland counterparts, they contain enough diversity to uniquely identify individual deer. Based on genetic identification, we estimated a census size of around 1000 individuals with a heavily skewed female-biased adult sex ratio. Furthermore, our genetic and contemporary demographic data were used to generate a species persistence model of the Key deer. Sensitivity tests within the population viability analysis brought to light the importance of fetal sex ratio and female survival as the primary factors at risk of driving the subspecies to extinction. This study serves as a prime example of how persistence models can be used to evaluate population viability in natural populations of endangered organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcover JA, Sans A, Palmer M (1998) The extent of extinctions of mammals on islands. J Biogeogr 25:913–918. doi:10.1046/j.1365-2699.1998.00246.x

    Article  Google Scholar 

  • Anderson JD, Honeycutt RL, Gonzales RA et al (2002) Development of microsatellite DNA markers for the automated genetic characterization of white-tailed deer populations. J Wildl Manag 66:67–74

    Article  Google Scholar 

  • Avise JC, Nelson WS (1989) Molecular genetic relationships of the extinct dusky seaside sparrow. Science 243:646–648

    Article  CAS  PubMed  Google Scholar 

  • Barrett MA, Stiling P (2006) Effects of Key deer herbivory on forest communities in the lower Florida Keys. Biol Conserv 129:100–108. doi:10.1016/j.biocon.2005.10.026

    Article  Google Scholar 

  • Bishop MD, Kappes SM, Keele JW et al (1994) A genetic linkage map for cattle. Genetics 136:619–639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boersen MR, Clark JD, King TL (2003) Estimating black bear population density and genetic diversity at Tensas River, Louisiana using microsatellite DNA markers. Wildl Soc Bull 31:197–207

    Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brezinsky L, Kemp SJ, Teale AJ (1993) Five polymorphic bovine microsatellites (ILSTS010-014). Anim Genet 24:75–76

    Article  CAS  PubMed  Google Scholar 

  • Brinkman TJ, Hundertmark KJ (2009) Sex identification of northern ungulates using low quality and quantity DNA. Conserv Genet 10:1189–1193. doi:10.1007/s10592-008-9747-2

    Article  CAS  Google Scholar 

  • Brinkman TJ, Schwartz MK, Person DK et al (2010) Effects of time and rainfall on PCR success using DNA extracted from deer fecal pellets. Conserv Genet 11:1547–1552. doi:10.1007/s10592-009-9928-7

    Article  CAS  Google Scholar 

  • Bristol RM, Tucker R, Dawson DA et al (2013) Comparison of historical bottleneck effects and genetic consequences of re-introduction in a critically endangered island passerine. Mol Ecol 22:4644–4662. doi:10.1111/mec.12429

    Article  PubMed  Google Scholar 

  • Brown RM, Weghorst JA, Olson KV et al (2014) Conservation genetics of the Philippine tarsier: cryptic genetic variation restructures conservation priorities for an island archipelago primate. PLoS ONE 9:e104340. doi:10.1371/journal.pone.0104340

    Article  PubMed  PubMed Central  Google Scholar 

  • Cantor M, Wedekin LL, Daura-Jorge FG, et al (2012) Assessing population parameters and trends of Guiana dolphins (Sotalia guianensis): an eight-year mark-recapture study. Mar Mamm Sci 28:63–83. doi:10.1111/j.1748-7692.2010.00456.x

    Article  Google Scholar 

  • Caughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244. doi:10.2307/5542

    Article  Google Scholar 

  • Cheng Y, Sanderson C, Jones M, Belov K (2012) Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 64:525–533. doi:10.1007/s00251-012-0614-4

    Article  CAS  PubMed  Google Scholar 

  • Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Clutton-Brock TH (1989) Mammalian mating systems. Proc R Soc Lond B 236:339–372

    Article  CAS  PubMed  Google Scholar 

  • Clutton-Brock TH, Iason GR (1986) Sex ratio variation in mammals. Q Rev Biol 61:339–374

    Article  CAS  PubMed  Google Scholar 

  • Coster SS, Kovach AI, Pekins PJ et al (2011) Genetic mark-recapture population estimation in black bears and issues of scale. J Wildl Manag 75:1128–1136. doi:10.1002/jwmg.143

    Article  Google Scholar 

  • Degner JF, Stout IJ, Roth JD, Parkinson CL (2007) Population genetics and conservation of the threatened southeastern beach mouse (Peromyscus polionotus niveiventris): subspecies and evolutionary units. Conserv Genet 8:1441–1452. doi:10.1007/s10592-007-9295-1

    Article  Google Scholar 

  • DeWoody JA, Honeycutt RL, Skow LC (1995) Microsatellite markers in white-tailed deer. J Hered 86:317–319

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, VonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Efford MG (2014) secr: Spatially explicit capture-recapture models. R package version 2.9.0

  • Ellsworth DL, Honeycutt RL, Silvy NJ, et al (1994) Historical biogeography and contemporary patterns of mitochondrial DNA variation in white-tailed deer from the southeastern United States. Evolution (N Y) 48:122–136

    Google Scholar 

  • Etter DR, Hollis KM, Van Deelen TR et al (2002) Survival and movements of white-tailed deer in suburban Chicago, Illinois. J Wildl Manag 66:500–510

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Folk MJ, Klimstra WD (1991) Reproductive performance of female Key deer. J Wildl Manag 55:386–390

    Article  Google Scholar 

  • Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity (Edinb) 78:311–327. doi:10.1038/hdy.1997.46

    Article  Google Scholar 

  • Frankham R (1998) Inbreeding and extinction: island populations. Conserv Biol 12:665–675

    Article  Google Scholar 

  • Gilpin ME, Soule ME (1986) Minimum viable populations: processes of species extinction. In: Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, pp 19–34

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices

  • Gray TNE, Prum S (2012) Leopard density in post-conflict landscape, Cambodia: evidence from spatially explicit capture-recapture. J Wildl Manag 76:163–169. doi:10.1002/jwmg.230

    Article  Google Scholar 

  • Grayson KL, Mitchell NJ, Monks JM et al (2014) Sex ratio bias and extinction risk in an isolated population of tuatara (Sphenodon punctatus). PLoS ONE. doi:10.1371/journal.pone.0094214

    Google Scholar 

  • Grazziotin FG, Monzel M, Echeverrigaray S, Bonatto SL (2006) Phylogeography of the Bothrops jararaca complex (Serpentes: Viperidae): past fragmentation and island colonization in the Brazilian Atlantic Forest. Mol Ecol 15:3969–3982. doi:10.1111/j.1365-294X.2006.03057.x

    Article  CAS  PubMed  Google Scholar 

  • Hardin JW (1974) Behavior, socio-biology, and reproductive life history of the Florida Key deer, Odocoileus virginianus clavium. Southern Illinois University, Carbondale

    Google Scholar 

  • Hardin JW, Silvy NJ, Klimstra WD (1976) Group size and composition of the Florida Key deer. J Wildl Manag 40:454–463

    Article  Google Scholar 

  • Harris RB, Wall WA, Allendorf FW (2002) Genetic consequences of hunting: what do we know and what should we do? Wildl Soc Bull 30:634–643

    Google Scholar 

  • Harveson P, Grant WE, Lopez RR et al (2006) The role of dispersal in Florida Key deer metapopulation dynamics. Ecol Model 195:393–401. doi:10.1016/j.ecolmodel.2005.11.021

    Article  Google Scholar 

  • Harveson PM, Lopez RR, Collier BA, Silvy NJ (2007) Impacts of urbanization on Florida Key deer behavior and population dynamics. Biol Conserv 134:321–331. doi:10.1016/j.biocon.2006.07.022

    Article  Google Scholar 

  • Hedrick PW, Lacy RC, Allendorf FW, Soule ME (1996) Directions in conservation biology: comments on Caughley. Conserv Biol 10:1312–1320

    Article  Google Scholar 

  • Hoffman EA, Blouin MS (2004) Evolutionary history of the northern leopard frog: reconstruction of phylogeny, phylogeography, and historical changes in population demography from mitochondrial DNA. Evolution (N Y) 58:145–159. doi:10.1111/j.0014-3820.2004.tb01581.x

    Google Scholar 

  • Johnson WE, Onorato DP, Roelke ME, et al (2010) Genetic restoration of the Florida panther. Science 329:1641–1645. doi:10.1126/science.1192891

    Article  CAS  PubMed  Google Scholar 

  • Jones OR, Wang J (2010) Colony: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555. doi:10.1111/j.1755-0998.2009.02787.x

    Article  PubMed  Google Scholar 

  • Jones KC, Levine KF, Banks JD (2000) DNA-based genetic markes in black-tailed and mule deer for forensic applications. Calif Fish Game 86:115–126

    Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. doi:10.1111/j.1365-294X.2007.03089.x

    Article  PubMed  Google Scholar 

  • Kirkpatrick BW (1992) Identification of a conserved microsatellite site in the porcine and bovine insulin-like growth factor-I gene 5’ flank. Anim Genet 23:543–548

    Article  CAS  PubMed  Google Scholar 

  • Klimstra WD (1992) Key Deer. In: Humphrey SR (ed) Rare and endangered biota of Florida, vol 1. Mammals. University Press of Florida, Gainesville, pp 201–215

    Google Scholar 

  • Klimstra WD, Folk MJ, Ellis RW (1991) Skull size of two insular and one mainland subspecies of Odocoileus virginianus from the Southeast. Trans Ill State Acad Sci 84:185–191

    Google Scholar 

  • Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460

    Article  CAS  PubMed  Google Scholar 

  • Lazell Jr JD (1989) Wildlife of the Florida Keys: a natural history. Island Press, Washington, D.C

    Google Scholar 

  • Lehnert ME, Bissonette JA, Haefner JW (1998) Deer (Cervidae) highway mortality: using models to tailor mitigative efforts. Gibier Faune Sauvag Game Wildl 15:835–841

    Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi:10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  • Lindsay AR, Belant JL (2008) A simple and improved PCR-based technique for white-tailed deer (Odocoileus virginianus) sex identification. Conserv Genet 9:443–447. doi:10.1007/s10592-007-9326-y

    Article  CAS  Google Scholar 

  • Lopez RR (2001) Population ecology of the Florida Key deer. Texas A&M University, College Station

    Google Scholar 

  • Lopez RR, Silvy NJ, Labisky RF, Frank PA (2003a) Hurricane impacts on Key deer in the Florida Keys. J Wildl Manag 67:280–288

    Article  Google Scholar 

  • Lopez RR, Vieira MEP, Silvy NJ et al (2003b) Survival, mortality, and life expectancy of Florida Key deer. J Wildl Manag 67:34–45

    Article  Google Scholar 

  • Lopez RR, Silvy NJ, Pierce BL et al (2004) Population density of the endangered Florida Key deer. J Wildl Manag 68:570–575. doi:10.2193/0022-541X(2004)068[0570:P.EF]2.0.CO;2

    Article  Google Scholar 

  • Manne LL, Brooks TM, Pimm SL (1999) Relative risk of extinction of passerine birds on continents and islands. Nature 399:258–261

    Article  CAS  Google Scholar 

  • Martins EG, Bonato V, Da-Silva CQ, dos Reis SF (2006) Seasonality in reproduction, age structure and density of the gracile mouse opossum Gracilinanus microtarsus (Marsupialia: Didelphidae) in a Brazilian cerrado. J Trop Ecol 22:461–468. doi:10.1017/S0266467406003269

    Article  Google Scholar 

  • McGinley MA (1984) The adaptive value of male-biased sex ratios among stressed animals. Am Nat 124:597–599

    Article  Google Scholar 

  • Miller HC, Lambert DM (2004) Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae). Mol Ecol 13:3709–3721. doi:10.1111/j.1365-294X.2004.02368.x

    Article  CAS  PubMed  Google Scholar 

  • Morán-Luis M, Fameli A, Blanco-Fontao B et al (2014) Demographic status and genetic tagging of endangered capercaillie in NW Spain. PLoS ONE 9:e99799. doi:10.1371/journal.pone.0099799

    Article  PubMed  PubMed Central  Google Scholar 

  • Mowat G, Paetkau D (2002) Estimating marten Martes americana population size using hair capture and genetic tagging. Wildl Biol 8:201–209

    Google Scholar 

  • Murrow JL, Clark JD, Delozier EK (2009) Demographics of an experimentally released population of Elk in Great Smoky Mountains National Park. J Wildl Manag 73:1261–1268. doi:10.2193/2008-573

    Article  Google Scholar 

  • Noyes JH, Johnson BK, Bryant LD et al (1996) Effects of bull age on conception dates and pregnancy rates of cow elk. J Wildl Manag 60:508–517

    Article  Google Scholar 

  • O’Leary SJ, Dunton KJ, King TL, et al (2014) Genetic diversity and effective size of Atlantic sturgeon, Acipenser oxyrhinchus oxyrhinchus river spawning populations estimated from the microsatellite genotypes of marine-captured juveniles. Conserv Genet. doi:10.1007/s10592-014-0609-9

    Google Scholar 

  • Otis DL, Burnham KP, White GC, Anderson DR (1978) Statistical inference from capture data on closed animal populations. Wildl Monogr 62:3–135

    Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Perrin N, Mazalov V (2000) Local competition, inbreeding, and the evolution of sex-biased dispersal. Am Nat 155:116–127. doi:10.1086/303296

    CAS  PubMed  Google Scholar 

  • Peterson MN, Lopez RR, Laurent EJ et al (2005) Wildlife loss through domestication: the case of endangered Key deer. Conserv Biol 19:939–944. doi:10.1111/j.1523-1739.2005.00069.x

    Article  Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855. doi:10.1046/j.1523-1739.1998.96489.x

    Article  Google Scholar 

  • Pimm SL, Dollar L, Bass OL (2006) The genetic rescue of the Florida panther. Anim Conserv 9:115–122. doi:10.1111/j.1469-1795.2005.00010.x

    Article  Google Scholar 

  • Pradel R, Johnson AR, Viallefont A et al (1997) Local recruitment in the greater flamingo: a new approach using capture-mark-recapture data. Ecology 78:1431–1445

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rayan DM, Mohamad SW, Dorward L et al (2012) Estimating the population density of the Asian tapir (Tapirus indicus) in a selectively logged forest in Peninsular Malaysia. Integr Zool 7:373–380. doi:10.1111/j.1749-4877.2012.00321.x

    Article  PubMed  Google Scholar 

  • Réale D, Boussès P, Chapuis J-L (1996) Female-biased mortality induced by male sexual harassment in a feral sheep population. Can J Zool 74:1812–1818. doi:10.1139/z96-202

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution (N Y) 43:223–225

    Google Scholar 

  • Rice WR, Harder JD (1977) Application of multiple aerial sampling to a mark-recapture census of white-tailed deer. J Wildl Manag 41:197–206

    Article  Google Scholar 

  • Ricklefs RE (2009) Dynamics of colonization and extinction on islands. In: Losos JB, Ricklefs RE (eds) The theory of island biogeography revisited. Princeton University Press, Princeton, pp 388–414

    Google Scholar 

  • Robert A, Colas B, Guigon I et al (2015) Defining reintroduction success using IUCN criteria for threatened species: a demographic assessment. Anim Conserv. doi:10.1111/acv.12188

    Google Scholar 

  • Roberts CW (2005) Estimating density of Florida Key deer. Texas A&M University, College Station, TX

    Google Scholar 

  • Robinson SJ, Samuel MD, Lopez DL, Shelton P (2012) The walk is never random: subtle landscape effects shape gene flow in a continuous white-tailed deer population in the Midwestern United States. Mol Ecol 21:4190–4205. doi:10.1111/j.1365-294X.2012.05681.x

    Article  PubMed  Google Scholar 

  • Roelke ME, Martenson JS, O’Brien SJ (1993) The consequences of demographic reduction and genetic depletion in the endangered Florida panther. Curr Biol 3:340–350. doi:10.1016/0960-9822(93)90197-V

    Article  CAS  PubMed  Google Scholar 

  • Rohland N, Reich D (2012) Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res 22:939–946. doi:10.1101/gr.128124.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. doi:10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  • Schwartz MK, Monfort SL (2008) Genetic and endocrine tools for carnivore surveys. In: Long RA, MacKay P, Ray JC, Zielinski W (eds) Noninvasive survey methods for North American Carnivores. Island Press, Washington, D.C., pp 228–250

    Google Scholar 

  • Scribner KT, Smith MH, Garrott RA, Carpenter LH (1991) Temporal, spatial, and age-specific changes in genotypic composition of mule deer. J Mamm 72:126–137

    Article  Google Scholar 

  • Seal US, Lacy RC, Participants W (1990) Florida Key deer population viability assessment

  • Smith O, Wang J (2014) When can noninvasive samples provide sufficient information in conservation genetics studies? Mol Ecol Resour 14:1011–1023. doi:10.1111/1755-0998.12250

    CAS  PubMed  Google Scholar 

  • Soule M (1973) The epistasis cycle: a theory of marginal populations. Annu Rev Ecol Evol Syst 4:165–187

    Article  Google Scholar 

  • Sugimoto T, Aramilev VV, Kerley LL et al (2014) Noninvasive genetic analyses for estimating population size and genetic diversity of the remaining Far Eastern leopard (Panthera pardus orientalis) population. Conserv Genet 15:521–532. doi:10.1007/s10592-013-0558-8

    Article  Google Scholar 

  • Symington MM (1987) Sex ratio and maternal rank in wild spider monkeys: when daughters disperse. Behav Ecol Sociobiol 20:421–425. doi:10.1007/BF00302985

    Article  Google Scholar 

  • Talbot J, Haigh L, Plante Y (1996) A parentage evaluation test in North American elk (wapiti) using microsatellites of ovine and bovine origin. Anim Genet 27:117–119

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, et al (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y (2000) Extinction of populations by inbreeding depression under stochastic environments. Popul Ecol 42:55–62. doi:10.1007/s101440050044

    Article  Google Scholar 

  • Team RC (2013) R: a language and environment for statistical computing

  • Tursi RM, Hughes PT, Hoffman EA (2013) Taxonomy versus phylogeny: evolutionary history of marsh rabbits without hopping to conclusions. Divers Distrib 19:120–133. doi:10.1111/j.1472-4642.2012.00915.x

    Article  Google Scholar 

  • USFWS (1999) South Florida multi-species recovery plan

  • Vaiman D, Osta R, Mercier D et al (1992) Characterization of five new bovine dinucleotide repeats. Anim Genet 23:537–541

    Article  CAS  PubMed  Google Scholar 

  • van Noordwijk AJ (1994) The interaction of inbreeding depression and environmental stochasticity in the risk of extinction of small populations. In: Loeschcke V, Tomiuk J, Jain SK (eds) Conservation genetics. Birkhauser Verlag, Basel, pp 131–146

    Chapter  Google Scholar 

  • Verme LJ (1969) Reproductive patterns of white-tailed deer related to nutritional plane. J Wildl Manag 33:881–887

    Article  Google Scholar 

  • Waits LP, Paetkau D (2005) Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J Wildl Manag 69:1419–1433

    Article  Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:S120–S139

    Article  Google Scholar 

  • White TA, Searle JB (2007) Genetic diversity and population size: island populations of the common shrew, Sorex araneus. Mol Ecol 16:2005–2016. doi:10.1111/j.1365-294X.2007.03296.x

    Article  CAS  PubMed  Google Scholar 

  • Wilson GA, Strobeck C, Wu L, Coffin JW (1997) Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Mol Ecol 6:697–699

    Article  CAS  PubMed  Google Scholar 

  • Zachos FE, Otto M, Unici R, et al (2008) Evidence of a phylogeographic break in the Romanian brown bear (Ursus arctos) population from the Carpathians. Mamm Biol 73:93–101. doi:10.1016/j.mambio.2007.02.007

    Article  Google Scholar 

Download references

Acknowledgements

This project received financial support from the U.S. Fish and Wildlife Service. Sample collection as carried out under the UCF Institutional Animal Care and Use Committee permit 13-09W. We thank Chris Parkinson, Ken Fedorka, Alexa Trujillo, Jason Strickland, Gina Ferrie, Kim Arnaldi, Jason Hickson, Gregory Territo, Matthew Lawrance, Andrew Mason, John Konvalina and Rhett Rautsaw for their support and invaluable assistance. We are thankful to all of the people that assisted in sample collection: Florida Fish and Wildlife (especially Elina Garrison and Bambi Clemons) and the Ellie Schiller Homosassa Springs Wildlife State Park.

Author contributions

VV, PH, EH., conceived the ideas; VV and PH acquired samples; VV collected the data; VV and EH analyzed the data; VV and EH led the writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Hoffman.

Additional information

DNA sequences: Genbank accessions KT877248-KT877344.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villanova, V.L., Hughes, P.T. & Hoffman, E.A. Combining genetic structure and demographic analyses to estimate persistence in endangered Key deer (Odocoileus virginianus clavium). Conserv Genet 18, 1061–1076 (2017). https://doi.org/10.1007/s10592-017-0958-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-017-0958-2

Keywords

Navigation