Skip to main content
Log in

Age and sex-dependent effects of landscape cover and trapping on the spatial genetic structure of the stone marten (Martes foina)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Maintenance of genetic variation is of critical importance for wild populations since low levels limit the species’ ability to respond to different threats (diseases, predators, environmental changes) in both the long and the short term. Human activities could impact the genetic variation of wild species in multiple ways, including via fragmentation and harvesting. We used an individual-based landscape genetics approach to describe the impact of landscape elements and trapping pressure on the spatial genetic structure of a large sample (n = 370) of the stone marten (Martes foina) in central-eastern France (Bresse). An analysis of isolation-by-resistance using a causal modeling approach showed an influence of landscape cover and/or trapping pressure on gene flow according to age and sex class. Overall, the connectivity in the study area is provided mainly by vegetation cover, while roads and open areas partially impede it. Unexpectedly for this “urban adapter” species, buildings could reduce gene flow. We also emphasized the sex-dependent effect of trapping on gene flow. Genetic differentiation in males was influenced by trapping pressure and landscape structure while only the latter influenced genetic differentiation in females. A stronger isolation by distance in males than in females suggested that at the scale of the study area, males are more exposed to trapping pressure, which reduces effective dispersal. Overall, the combination of both landscape and trapping costs might create an ‘ecological trap’ that could disrupt gene flow, leading to a north–south division in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alberti M, Marzluff J, Shulenberger E, Bradley G, Ryan C, Zumbrunnen C (2008) Integrating humans into ecology: opportunities and challenges for studying urban ecosystems. In: Marzluff J et al (eds) Urban ecology. Springer, New York, pp 143–158. doi:10.1007/978-0-387-73412-5_9

    Chapter  Google Scholar 

  • Allendorf FW, England PR, Luikart G, Ritchie PA, Ryman N (2008) Genetic effects of harvest on wild animal populations. Trends Ecol Evol 23:327–337. doi:10.1016/j.tree.2008.02.008

    Article  PubMed  Google Scholar 

  • Amos W, Harwood J (1998) Factors affecting levels of genetic diversity in natural populations. Philos Trans R Soc Lond B Biol Sci 353:177–186. doi:10.1098/rstb.1998.0200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amos JN et al (2014) Species- and sex-specific connectivity effects of habitat fragmentation in a suite of woodland birds. Ecology 95:1556–1568. doi:10.1890/13-1328.1

    Article  PubMed  Google Scholar 

  • Baillie J, Hilton-Taylor C, Stuart S (2004) IUCN red list of threatened species: a global species assessment. IUCN Gland, Cambridge

    Google Scholar 

  • Basto M, Rodrigues M, Santos-Reis M, Bruford M, Fernandes C (2010) Isolation and characterization of 13 tetranucleotide microsatellite loci in the stone marten (Martes foina). Conserv Genet Res 2:317–319. doi:10.1007/s12686-010-9217-2

    Article  Google Scholar 

  • Bertolino S, Dore B (1995) Food habits of the stone marten Martes foina in “La Mandria” Regional Park (Piedmont Region, North-Western Italy). Ital J Mammal 7:105–111

    Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Quart Rev Biol 74:21–45

    Article  CAS  PubMed  Google Scholar 

  • Bowne D, Bowers M (2004) Interpatch movements in spatially structured populations: a literature review. Landsc Ecol 19:1–20. doi:10.1023/B:LAND.0000018357.45262.b9

    Article  Google Scholar 

  • Broekhuizen S (1999) Martes foina. In: Mitchell-Jones AJ et al (eds) The atlas of European mammals. T. & AD Poyser, London, p 496

    Google Scholar 

  • Burger R, Lynch M (1995) Evolution and extinction in a changing environment—a quantitative-genetic analysis. Evolution 49:151–163. doi:10.2307/2410301

    Article  Google Scholar 

  • Buskirk SW, Lindstedt SL (1989) Sex biases in trapped samples of Mustelidae. J Mammal 70:88–97

    Article  Google Scholar 

  • Carter NH, Shrestha BK, Karki JB, Pradhan NMB, Liu J (2012) Coexistence between wildlife and humans at fine spatial scales. Proc Natl Acad Sci 109:15360–15365. doi:10.1073/pnas.1210490109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo JA, Epps CW, Davis AR, Cushman SA (2014) Landscape effects on gene flow for a climate-sensitive montane species, the American pika. Mol Ecol 23:843–856. doi:10.1111/mec.12650

    Article  PubMed  Google Scholar 

  • Caughley G, Gunn A (1996) Conservation biology in theory and practice. Blackwell Science, Inc,

  • Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270

    Article  PubMed  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499. doi:10.1086/506976

    Article  PubMed  Google Scholar 

  • Cushman S, Wasserman T, Landguth E, Shirk A (2013) Re-evaluating causal modeling with mantel tests in landscape genetics. Diversity 5:51–72

    Article  Google Scholar 

  • Delibes M (1978) Feeding habits of the stone marten, Martes foina (Erxleben 1777), in northern burgos, spain. Zeitschrift fuer Saeugetierkunde 43:282–288

    Google Scholar 

  • Delibes M (1983) Interspecific competition and the habitat of the stone Marten in Europe. Acta Zool Fennica 174:229–231

    Google Scholar 

  • Devillard S, Bray Y (2009) Assessing the effect on survival of natal dispersal using multistate capture-recapture models. Ecology 90:2902–2912

    Article  PubMed  Google Scholar 

  • DeWoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 56:461–473

    Article  CAS  Google Scholar 

  • DiBattista J (2008) Patterns of genetic variation in anthropogenically impacted populations. Conserv Genet 9:141–156. doi:10.1007/s10592-007-9317-z

    Article  Google Scholar 

  • Dobson FS (1982) Competition for mates and predominant juvenile male dispersal in mammals. Anim Behav 30:1183–1192

    Article  Google Scholar 

  • Duduś L, Zalewski A, Kozioł O, Jakubiec Z, Król N (2014) Habitat selection by two predators in an urban area: the stone marten and red fox in Wrocław (SW Poland). Mammal Biol 79:71–76. doi:10.1016/j.mambio.2013.08.001

    Google Scholar 

  • Etherington T, Penelope Holland E (2013) Least-cost path length versus accumulated-cost as connectivity measures. Landsc Ecol 28:1223–1229. doi:10.1007/s10980-013-9880-2

    Article  Google Scholar 

  • Ferreira da Silva MJ, Godinho R, Casanova C, Minhós T, Sá R, Bruford MW (2014) Assessing the impact of hunting pressure on population structure of Guinea baboons (Papio papio) in Guinea-Bissau. Conserv Genet 15:1339–1355. doi:10.1007/s10592-014-0621-0

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Garroway CJ, Bowman J, Wilson PJ (2011) Using a genetic network to parameterize a landscape resistance surface for fishers, Martes pennanti. Mol Ecol 20:3978–3988. doi:10.1111/j.1365-294X.2011.05243.x

    Article  PubMed  Google Scholar 

  • Greenwood PJ, Harvey PH (1982) The natal and breeding dispersal of birds. Annu Rev Ecol Syst 13:1–21. doi:10.1146/annurev.es.13.110182.000245

    Article  Google Scholar 

  • Grilo C, Ascensão F, Santos-Reis M, Bissonette J (2011) Do well-connected landscapes promote road-related mortality? Eur J Wildl Res 57:707–716. doi:10.1007/s10344-010-0478-6

    Article  Google Scholar 

  • Grilo C et al (2012) Individual spatial responses towards roads: implications for mortality risk. Plos One 7:e43811. doi:10.1371/journal.pone.0043811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handley LJL, Perrin N (2007) Advances in our understanding of mammalian sex-biased dispersal. Mol Ecol 16:1559–1578. doi:10.1111/j.1365-294X.2006.03152.x

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. doi:10.1046/j.1471-8286.2002.00305.x

    Article  Google Scholar 

  • Harris S (1978) Age-determination in red fox (vulpes-vulpes)—evaluation of technique efficiency as applied to a sample of suburban foxes. J Zool 184:91–117

    Article  Google Scholar 

  • Harris RB, Wall WA, Allendorf FW (2002) Genetic consequences of hunting: what do we know and what should we do? Wildl Soc Bull 30:634–643

    Google Scholar 

  • Herr J, Schley L, Roper TJ (2009a) Socio-spatial organization of urban stone martens. J Zool 277:54–62. doi:10.1111/j.1469-7998.2008.00510.x

    Article  Google Scholar 

  • Herr J, Schley L, Roper TJ (2009b) Stone martens (Martes foina) and cars: investigation of a common human-wildlife conflict. Eur J Wildl Res 55:471–477. doi:10.1007/s10344-009-0263-6

    Article  Google Scholar 

  • Herr J, Schley L, Engel E, Roper TJ (2010) Den preferences and denning behaviour in urban stone martens (Martes foina). Mamm Biol 75:138–145. doi:10.1016/j.mambio.2008.12.002

    Google Scholar 

  • Hijmans RJ (2014) Raster: Geographic data analysis and modeling. R package version 2.3–12. http://CRAN.R-project.org/package=raster

  • Holderegger R, Di Giulio M (2010) The genetic effects of roads: a review of empirical evidence. Basic Appl Ecol 11:522–531. doi:10.1016/j.baae.2010.06.006

    Article  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. doi:10.1093/bioinformatics/btn129

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Dufour AB, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103. doi:10.1038/hdy.2008.34

    Article  CAS  PubMed  Google Scholar 

  • Kalpers J (1984) Contribution à l'étude éco-éthologique de la fouine (Martes foina): stratégie d'utilisation du domaine vital et des ressources alimentaires. II. Radiorepérage et discussion générale. Cahier d'Ethologie appliquée 4:11–26

    Google Scholar 

  • Lachat Feller N (1993a) Eco-éthologie de la fouine (Martes foina Erxleben, 1777) dans le Jura suisse. Université de Neuchâtel, Neuchâtel

    Google Scholar 

  • Lachat Feller N (1993b) Utilisation des gîtes par la fouine (Martes foina) dans le Jura suisse. Z Säugetierkd 58:330–336

    Google Scholar 

  • Lacy RC (1997) Importance of genetic variation to the viability of mammalian populations. J Mammal 78:320–335. doi:10.2307/1382885

    Article  Google Scholar 

  • Lande R, Shannon S (1996) The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50:434–437. doi:10.2307/2410812

    Article  Google Scholar 

  • Larroque J, Ruette S, Vandel J-M, Devillard S (2015) Where to sleep in a rural landscape? A comparative study of resting sites pattern in two syntopic Martes species. Ecography 38:1129–1140. doi:10.1111/ecog.01133

    Article  Google Scholar 

  • Lode T (1994) Feeding-habits of the stone marten Martes foina and environmental-factors in western France. Zeitschrift Fur Saugetierkunde 59:189–191

    Google Scholar 

  • Loh J, Green RE, Ricketts T, Lamoreux J, Jenkins M, Kapos V, Randers J (2005) The living planet index: using species population time series to track trends in biodiversity. Philos Trans R Soc B 360:289–295. doi:10.1098/rstb.2004.1584

    Article  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197. doi:10.1016/s0169-5347(03)00008-9

    Article  Google Scholar 

  • Mergey M, Larroque J, Ruette S, Vandel J-M, Helder R, Queney G, Devillard S (2012) Linking habitat characteristics with genetic diversity of the European pine marten (Martes martes) in France. Eur J Wildl Res 58:909–922. doi:10.1007/s10344-012-0634-2

    Article  Google Scholar 

  • Michelat D, Quéré J-P, Giraudoux P (2001) Caractéristiques des gîtes utilisés par la fouine (Martes foina, Erxleben, 1777) dans le Haut-Doubs. Rev Suisse Zool 108:263–274

    Article  Google Scholar 

  • Moller TB, Pertoldi C, Madsen AB, Asferg T, Frydenberg J, Hammershoj M, Loeschcke V (2004) Genetic variability in Danish polecats Mustela putorius as assessed by microsatellites. Wildl Biol 10:25–33

    Google Scholar 

  • Nagai T, Raichev EG, Tsunoda H, Kaneko Y, Masuda R (2012) Preliminary study on microsatellite and mitochondrial DNA variation of the stone marten Martes foina in Bulgaria. Mammal Study 37:353–358

    Article  Google Scholar 

  • Norris K (2004) Managing threatened species: the ecological toolbox, evolutionary theory and declining-population paradigm. J Appl Ecol 41:413–426. doi:10.1111/j.0021-8901.2004.00910.x

    Article  Google Scholar 

  • Novikov GA (1962) K ekologii kamennoi kunicy v lesostepnych dubravach. Byul Mosk Obshch Ispytat Prirody Otd Biol 47:5–16

    Google Scholar 

  • Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420. doi:10.1093/bioinformatics/btp696

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57:1182–1195

    Article  PubMed  Google Scholar 

  • Pereboom V, Mergey M, Villerette N, Helder R, Gerard JF, Lode T (2008) Movement patterns, habitat selection, and corridor use of a typical woodland-dweller species, the European pine marten (Martes martes), in fragmented landscape. Can J Zool 86:983–991. doi:10.1139/z08-076

    Article  Google Scholar 

  • Pitman RT, Swanepoel LH, Hunter L, Slotow R, Balme GA (2015) The importance of refugia, ecological traps and scale for large carnivore management. Biodivers Conserv 24:1975–1987. doi:10.1007/s10531-015-0921-9

    Article  Google Scholar 

  • Posluszny M, Pilot M, Goszczynski J, Gralak B (2007) Diet of sympatric pine marten (Martes martes) and stone marten (Martes foina) identified by genotyping of DNA from faeces. Ann Zool Fenn 44:269–284

    Google Scholar 

  • Powell RA (1979) Mustelid spacing patterns—variations on a theme by Mustela. J Comp Ethol 50:153–165

    Google Scholar 

  • Proulx G et al (2005) World Distribution and Status of the Genus Martes in 2000. In: Harrison D, Fuller A, Proulx G (eds) Martens and Fishers (Martes) in Human-Altered Environments. Springer, New York, pp 21–76. doi:10.1007/0-387-22691-5_2

    Chapter  Google Scholar 

  • R Development Core Team (2014) R: A Language and Environment for Statistical Computing. http://www.R-project.org

  • Raymond M, Rousset F (1995) Genepop (version-1.2)—population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Robinson HS, Wielgus RB, Cooley HS, Cooley SW (2008) Sink populations in carnivore management: cougar demography and immigration in a hunted population. Ecol Appl 18:1028–1037

    Article  PubMed  Google Scholar 

  • Rondinini C, Boitani L (2002) Habitat use by beech martens in a fragmented landscape. Ecography 25:257–264. doi:10.1034/j.1600-0587.2002.250301.x

    Article  Google Scholar 

  • Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62

    Article  Google Scholar 

  • Ruette S, Larroque J, Albaret M, Vandel J-M, Devillard S (2015a) Quantifying the age- and sex-dependent morphological variation in two syntopic mustelids: Martes martes and Martes foina. Mammal Biol 80:414–423. doi:10.1016/j.mambio.2015.06.001

    Google Scholar 

  • Ruette S, Vandel JM, Albaret M, Devillard S (2015b) Comparative survival pattern of the syntopic pine and stone martens in a trapped rural area in France. J Zool 295:214–222. doi:10.1111/jzo.12201

    Article  Google Scholar 

  • Ruiz-González A, Madeira M, Randi E, Urra F, Gómez-Moliner B (2013) Non-invasive genetic sampling of sympatric marten species (Martes martes and Martes foina): assessing species and individual identification success rates on faecal DNA genotyping. Eur J Wildl Res 59:371–386. doi:10.1007/s10344-012-0683-6

    Article  Google Scholar 

  • Sacchi O, Meriggi A (1995) Habitat requirements of the stone marten (Martes foina) on the Tyrrhenian slopes of the northern Apennines. Hystrix 7:99–104

    Google Scholar 

  • Santos MJ, Santos-Reis M (2010) Stone marten (Martes foina) habitat in a mediterranean ecosystem: effects of scale, sex, and interspecific interactions. Eur J Wildl Res 56:275–286. doi:10.1007/s10344-009-0317-9

    Article  Google Scholar 

  • Santos-Reis M, Santos M, Lourenço S, Marques J, Pereira I, Pinto B (2005) Relationships between Stone Martens, Genets and Cork Oak Woodlands in Portugal. In: Harrison D, Fuller A, Proulx G (eds) Martens and fishers (Martes) in human-altered environments. Springer, New York, pp 147–172. doi:10.1007/0-387-22691-5_7

    Chapter  Google Scholar 

  • Shirk AJ, Wallin DO, Cushman SA, Rice CG, Warheit KI (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19:3603–3619. doi:10.1111/j.1365-294X.2010.04745.x

    Article  CAS  PubMed  Google Scholar 

  • Spear SF, Balkenhol N, Fortin MJ, McRae BH, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591. doi:10.1111/j.1365-294X.2010.04657.x

    Article  PubMed  Google Scholar 

  • Stahl P, Ruette S, Gros L (2002) Predation on free-ranging poultry by mammalian and avian predators: field loss estimates in a French rural area. Mammal Rev 32:227–234

    Article  Google Scholar 

  • Storfer A et al (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142. doi:10.1038/sj.hdy.6800917

    Article  CAS  PubMed  Google Scholar 

  • Toth M, Barany A, Kis R (2009) An evaluation of stone marten (Martes foina) records in the city of Budapest, Hungary. Acta Zool Acad Sci Hung 55:199–209

    Google Scholar 

  • van der Meer E, Rasmussen GSA, Muvengwi J, Fritz H (2014) Foraging costs, hunting success and its implications for African wild dog (Lycaon pictus) conservation inside and outside a protected area. Afr J Ecol 52:69–76. doi:10.1111/aje.12092

    Article  Google Scholar 

  • van Etten J (2014) gdistance: Distances and movements on geographical grids. http://r-forge.r-project.org/projects/gdistance/

  • Vanvuren D, Armitage KB (1994) Survival of dispersing and philopatric yellow-bellied marmots: what is the cost of dispersal? Oikos 69:179–181

    Article  Google Scholar 

  • Vergara M, Basto MP, Madeira MJ, Gomez-Moliner BJ, Santos-Reis M, Fernandes C, Ruiz-Gonzalez A (2015) Inferring population genetic structure in widely and continuously distributed carnivores: the stone marten (Martes foina) as a case study. PLoS One 10:e0134257. doi:10.1371/journal.pone.0134257

    Article  PubMed  PubMed Central  Google Scholar 

  • Wasserman TN, Cushman SA, Schwartz MK, Wallin DO (2010) Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landsc Ecol 25:1601–1612. doi:10.1007/s10980-010-9525-7

    Article  Google Scholar 

  • Wilcove DS, McLellan CH, Dobson AP (1986) Habitat fragmentation in the temperate zone. In: Soule ME (ed) Conservation biology: the science of scarcity and diversity. vol Accessed from http://nla.gov.au/nla.cat-vn2843461. Sinauer Associates, Sunderland, Mass, p 584

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418. doi:10.1016/0169-5347(96)10045-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to the hunters and trappers associations of Ain, Saône-et-Loire and Ariège who helped us with field work, especially Evelyn Marty, Willy Genton, Léon Boully and Daniel Vivant. We also thank Christine Carter and Radika Michniewicz who kindly edited the English. This study was supported by the DIVA 3-PoulHaieCREM program from the French Ministry of Ecology, the “Office National de la Chasse et de la Faune Sauvage” and the University of Lyon -CNRS. This work was performed using computing facilities of the CC LBBE/PRABI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Larroque.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larroque, J., Ruette, S., Vandel, JM. et al. Age and sex-dependent effects of landscape cover and trapping on the spatial genetic structure of the stone marten (Martes foina). Conserv Genet 17, 1293–1306 (2016). https://doi.org/10.1007/s10592-016-0862-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0862-1

Keywords

Navigation