Skip to main content
Log in

Hybrid remora crayfish optimization for engineering and wireless sensor network coverage optimization

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

This paper proposes a novel hybrid metaheuristic algorithm called the remora crayfish optimization algorithm (HRCOA) designed for solving continuous optimization problems. The crayfish optimization algorithm (COA), recently proposed as a meta-heuristic algorithm (MA), exhibits certain limitations such as imbalanced exploration and exploitation capacities, susceptibility to premature optimization, and a propensity for stagnation. To address these shortcomings, we incorporate the exploitation operators from the remora optimization algorithm (ROA) to enhance the exploitative behaviors of COA. In addition, we simplify the summer resort operator in the original COA to streamline the search operator design, thus avoiding unnecessary complexity. Furthermore, numerical experiments on 10-dimensional (D) and 20-D CEC2022 benchmark functions, 50-D and 100-D CEC2020 benchmark functions, engineering optimization problems, and wireless sensor networks (WSNs) coverage optimization problems are conducted to investigate the performance of our proposed HRCOA comprehensively. We compare the proposed HRCOA against eight well-known state-of-the-art MAs, including CMAES and the original COA, as competitor algorithms. The experimental and statistical results confirm the effectiveness, competitiveness, and scalability of our proposal. Finally, we conclude that the proposed HRCOA possesses significant potential for addressing diverse optimization challenges in real-world scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Algorithm 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The source code of this research can be downloaded from https://github.com/RuiZhong961230/HRCOA.

References

  1. Zhong, R., Zhang, E., Munetomo, M.: Cooperative coevolutionary differential evolution with linkage measurement minimization for large-scale optimization problems in noisy environments. Complex Intell. Syst. 9, 4439–4456 (2023). https://doi.org/10.1007/s40747-022-00957-6

    Article  Google Scholar 

  2. Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., Banzhaf, W.: Nsga-net: Neural architecture search using multi-objective genetic algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 419–427. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3321707.3321729

  3. Zhong, R., Peng, F., Zhang, E., Yu, J., Munetomo, M.: Vegetation evolution with dynamic maturity strategy and diverse mutation strategy for solving optimization problems. Biomimetics (2023). https://doi.org/10.3390/biomimetics8060454

    Article  Google Scholar 

  4. De Jong, K.: Learning with genetic algorithms: An overview. Mach. Learn. 3, 121–138 (1988). https://doi.org/10.1007/BF00113894

    Article  Google Scholar 

  5. Storn, R.: On the usage of differential evolution for function optimization. In: Proceedings of North American Fuzzy Information Processing, pp. 519–523 (1996). https://doi.org/10.1109/NAFIPS.1996.534789

  6. Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4, 87–112 (1994). https://doi.org/10.1007/BF00175355

    Article  Google Scholar 

  7. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999). https://doi.org/10.1109/4235.771163

    Article  Google Scholar 

  8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–19484 (1995). https://doi.org/10.1109/ICNN.1995.488968

  9. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017). https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  10. Faramarzi, A., Heidarinejad, M., Mirjalili, S., Gandomi, A.H.: Marine predators algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 152, 113377 (2020). https://doi.org/10.1016/j.eswa.2020.113377

    Article  Google Scholar 

  11. Hashim, F.A., Hussien, A.G.: Snake optimizer: A novel meta-heuristic optimization algorithm. Knowl.-Based Syst. (2022). https://doi.org/10.1016/j.knosys.2022.108320

    Article  Google Scholar 

  12. Yu, J.: Vegetation evolution: An optimization algorithm inspired by the life cycle of plants. Int. J. Comput. Intell. Appl. (2022). https://doi.org/10.1142/S1469026822500109

    Article  Google Scholar 

  13. Hashim, F.A., Houssein, E.H., Hussain, K., Mabrouk, M.S., Al-Atabany, W.: Honey badger algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 192, 84–110 (2022). https://doi.org/10.1016/j.matcom.2021.08.013

    Article  MathSciNet  Google Scholar 

  14. Seyyedabbasi, A., Kiani, F.: Sand cat swarm optimization: a nature-inspired algorithm to solve global optimization problems. Eng. Comput. (2022). https://doi.org/10.1007/s00366-022-01604-x

    Article  Google Scholar 

  15. Dehghani, M., Montazeri, Z., Trojovská, E., Trojovský, P.: Coati optimization algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl.-Based Syst. 259, 110011 (2023). https://doi.org/10.1016/j.knosys.2022.110011

    Article  Google Scholar 

  16. Zhang, Y., Jin, Z.: Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization problems. Expert Syst. Appl. 148, 113246 (2020). https://doi.org/10.1016/j.eswa.2020.113246

    Article  Google Scholar 

  17. Shabani, A., Asgarian, B., Salido, M., Asil Gharebaghi, S.: Search and rescue optimization algorithm: A new optimization method for solving constrained engineering optimization problems. Expert Syst. Appl. 161, 113698 (2020). https://doi.org/10.1016/j.eswa.2020.113698

    Article  Google Scholar 

  18. Abdulhameed, S., Rashid, T.: Child drawing development optimization algorithm based on child’s cognitive development. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-05928-6

    Article  Google Scholar 

  19. Dehghani, M., Trojovska, E., Zuščák, T.: A new human-inspired metaheuristic algorithm for solving optimization problems based on mimicking sewing training. Sci. Rep. (2022). https://doi.org/10.1038/s41598-022-22458-9

    Article  Google Scholar 

  20. Xu, Y., Zhong, R., Zhang, C., Yu, J.: Multiplayer battle game-inspired optimizer for complex optimization problems (2023)

  21. Faridmehr, I., Nehdi, M.L., Davoudkhani, I.F., Poolad, A.: Mountaineering team-based optimization: A novel human-based metaheuristic algorithm. Mathematics (2023). https://doi.org/10.3390/math11051273

    Article  Google Scholar 

  22. Matoušová, I., Trojovsky, P., Dehghani, M., Trojovska, E., Kostra, J.: Mother optimization algorithm: a new human-based metaheuristic approach for solving engineering optimization. Sci. Rep. (2023). https://doi.org/10.1038/s41598-023-37537-8

    Article  Google Scholar 

  23. Talatahari, S., Azizi, M., Gandomi, A.H.: Material generation algorithm: A novel metaheuristic algorithm for optimization of engineering problems. Processes (2021). https://doi.org/10.3390/pr9050859

    Article  Google Scholar 

  24. Ahmadianfar, I., Heidari, A.A., Gandomi, A.H., Chu, X., Chen, H.: Run beyond the metaphor: An efficient optimization algorithm based on runge kutta method. Expert Syst. Appl. 181, 115079 (2021). https://doi.org/10.1016/j.eswa.2021.115079

    Article  Google Scholar 

  25. Shaqfa, M., Beyer, K.: Pareto-like sequential sampling heuristic for global optimisation. Soft. Comput. 25, 9077–9096 (2021). https://doi.org/10.1007/s00500-021-05853-8

    Article  Google Scholar 

  26. Ahmadianfar, I., Heidari, A.A., Noshadian, S., Chen, H., Gandomi, A.H.: Info: An efficient optimization algorithm based on weighted mean of vectors. Expert Syst. Appl. 195, 116516 (2022). https://doi.org/10.1016/j.eswa.2022.116516

    Article  Google Scholar 

  27. Su, H., Zhao, D., Heidari, A.A., Liu, L., Zhang, X., Mafarja, M., Chen, H.: Rime: A physics-based optimization. Neurocomputing 532, 183–214 (2023). https://doi.org/10.1016/j.neucom.2023.02.010

    Article  Google Scholar 

  28. Deng, L., Liu, S.: Snow ablation optimizer: A novel metaheuristic technique for numerical optimization and engineering design. Expert Syst. Appl. 225, 120069 (2023). https://doi.org/10.1016/j.eswa.2023.120069

    Article  Google Scholar 

  29. Cheng, M.-Y., Sholeh, M.N.: Optical microscope algorithm: A new metaheuristic inspired by microscope magnification for solving engineering optimization problems. Knowl.-Based Syst. (2023). https://doi.org/10.1016/j.knosys.2023.110939

    Article  Google Scholar 

  30. Shehadeh, H.: Chernobyl disaster optimizer (cdo): a novel meta-heuristic method for global optimization. Neural Comput. Appl. (2023). https://doi.org/10.1007/s00521-023-08261-1

    Article  Google Scholar 

  31. Qu, C., Gai, W., Zhang, J., Zhong, M.: A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (uav) path planning. Knowl.-Based Syst. 194, 105530 (2020). https://doi.org/10.1016/j.knosys.2020.105530

    Article  Google Scholar 

  32. Zhang, X., Lin, Q., Mao, W., Liu, S., Dou, Z., Liu, G.: Hybrid particle swarm and grey wolf optimizer and its application to clustering optimization. Appl. Soft Comput. 101, 107061 (2021). https://doi.org/10.1016/j.asoc.2020.107061

    Article  Google Scholar 

  33. Che, Y., He, D.-X.: A hybrid whale optimization with seagull algorithm for global optimization problems. Math. Probl. Eng. (2021). https://doi.org/10.1155/2021/6639671

    Article  Google Scholar 

  34. Han, B., Li, B., Qin, C.: A novel hybrid particle swarm optimization with marine predators. Swarm Evol. Comput. 83, 101375 (2023). https://doi.org/10.1016/j.swevo.2023.101375

    Article  Google Scholar 

  35. Jia, H., Rao, H., Wen, C., Mirjalili, S.: Crayfish optimization algorithm. Artif. Intell. Rev. 1, 1 (2023). https://doi.org/10.1007/s10462-023-10567-4

    Article  Google Scholar 

  36. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001). https://doi.org/10.1162/106365601750190398

    Article  Google Scholar 

  37. Qais, M.H., Hasanien, H.M., Turky, R.A., Alghuwainem, S., Tostado-Véliz, M., Jurado, F.: Circle search algorithm: A geometry-based metaheuristic optimization algorithm. Mathematics (2022). https://doi.org/10.3390/math10101626

    Article  Google Scholar 

  38. Trojovský, P., Dehghani, M., Hanuš, P.: Siberian tiger optimization: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems. IEEE Access 10, 132396–132431 (2022). https://doi.org/10.1109/ACCESS.2022.3229964

    Article  Google Scholar 

  39. Trojovský, P., Dehghani, M.: Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications. Sensors (2022). https://doi.org/10.3390/s22030855

    Article  Google Scholar 

  40. Dehghani, M., Trojovský, P.: Serval optimization algorithm: A new bio-inspired approach for solving optimization problems. Biomimetics (2022). https://doi.org/10.3390/biomimetics7040204

    Article  Google Scholar 

  41. Azizi, M., Aickelin, U., Khorshidi, H., Baghalzadeh Shishehgarkhaneh, M.: Energy valley optimizer: a novel metaheuristic algorithm for global and engineering optimization. Sci. Rep. 13, 226 (2023). https://doi.org/10.1038/s41598-022-27344-y

    Article  Google Scholar 

  42. Fertl, D., Landry, A.M., Jr.: Sharksucker (echeneis naucrates) on a bottlenose dolphin (tursiops truncatus) and a review of other cetacean-remora associations. Mar. Mamm. Sci. 15(3), 859–863 (1999). https://doi.org/10.1111/j.1748-7692.1999.tb00849.x

    Article  Google Scholar 

  43. Williams, E.H., Jr., Mignucci-Giannoni, A.A., Bunkley-Williams, L., Bonde, R.K., Self-Sullivan, C., Preen, A., Cockcroft, V.G.: Echeneid-sirenian associations, with information on sharksucker diet. J. Fish Biol. 63(5), 1176–1183 (2003). https://doi.org/10.1046/j.1095-8649.2003.00236.x

    Article  Google Scholar 

  44. Shadravan, S., Naji, H.R., Bardsiri, V.K.: The sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng. Appl. Artif. Intell. 80, 20–34 (2019). https://doi.org/10.1016/j.engappai.2019.01.001

    Article  Google Scholar 

  45. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  46. Jia, H., Peng, X., Lang, C.: Remora optimization algorithm. Expert Syst. Appl. 185, 115665 (2021). https://doi.org/10.1016/j.eswa.2021.115665

    Article  Google Scholar 

  47. Deepa, R., Venkataraman, R.: Enhancing whale optimization algorithm with levy flight for coverage optimization in wireless sensor networks. Comput. Electr. Eng. 94, 107359 (2021). https://doi.org/10.1016/j.compeleceng.2021.107359

    Article  Google Scholar 

  48. Singh, A., Sharma, S., Singh, J.: Nature-inspired algorithms for wireless sensor networks: A comprehensive survey. Comput. Sci. Rev. 39, 100342 (2021). https://doi.org/10.1016/j.cosrev.2020.100342

    Article  MathSciNet  Google Scholar 

  49. Wei, Y., Wei, X., Huang, H., Bi, J., Zhou, Y., Du, Y.: Ssma: simplified slime mould algorithm for optimization wireless sensor network coverage problem. Syst. Sci. Control Eng. 10(1), 662–685 (2022). https://doi.org/10.1080/21642583.2022.2084650

    Article  Google Scholar 

  50. Golalipour, K., Faraji Davoudkhani, I., Nasri, S., Naderipour, A., Mirjalili, S., Abdelaziz, A.Y., El-Shahat, A.: The corona virus search optimizer for solving global and engineering optimization problems. Alex. Eng. J. 78, 614–642 (2023). https://doi.org/10.1016/j.aej.2023.07.066

    Article  Google Scholar 

  51. Kumar, A., Price, K.V., Mohamed, A.W., Hadi, A.A., Suganthan, P.N.: Problem definitions and evaluation criteria for the cec 2022 special session and competition on single objective bound constrained numerical optimization. In: Technical Report (2022)

  52. Nguyen, T.: A framework of optimization functions using Numpy (OpFuNu) for optimization problems. Zenodo (2020). https://doi.org/10.5281/zenodo.3620960

    Article  Google Scholar 

  53. Yue, C.T., Price, P.N.S.K.V.: Problem definitions and evaluation criteria for the cec 2020 special session and competition on single objective bound constrained numerical optimization. In: Technical Report (2020)

  54. Zhong, R., Peng, F., Yu, J., Munetomo, M.: Q-learning based vegetation evolution for numerical optimization and wireless sensor network coverage optimization. Alex. Eng. J. 87, 148–163 (2024). https://doi.org/10.1016/j.aej.2023.12.028

    Article  Google Scholar 

  55. Thieu, N.V.: ENOPPY: a python library for engineering optimization problems. Zenodo (2023). https://doi.org/10.5281/zenodo.7953206

    Article  Google Scholar 

  56. Liang, J., Tian, M., Liu, Y., Zhou, J.: Coverage optimization of soil moisture wireless sensor networks based on adaptive cauchy variant butterfly optimization algorithm. Sci. Rep. (2022). https://doi.org/10.1038/s41598-022-15689-3

    Article  Google Scholar 

  57. Li, S., Chen, H., Wang, M., Heidari, A.A., Mirjalili, S.: Slime mould algorithm: A new method for stochastic optimization. Futur. Gener. Comput. Syst. 111, 300–323 (2020). https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  58. Bayzidi, H., Talatahari, S., Saraee, M., Lamarche, C.-P.: Social network search for solving engineering optimization problems. Comput. Intell. Neurosci. 2021, 1–32 (2021). https://doi.org/10.1155/2021/8548639

    Article  Google Scholar 

  59. Salgotra, R., Singh, U.: The naked mole-rat algorithm. Neural Comput. Appl. (2019). https://doi.org/10.1007/s00521-019-04464-7

    Article  Google Scholar 

  60. Guan, Z., Ren, C., Niu, J., Wang, P., Shang, Y.: Great wall construction algorithm: A novel meta-heuristic algorithm for engineer problems. Expert Syst. Appl. 233, 120905 (2023). https://doi.org/10.1016/j.eswa.2023.120905

    Article  Google Scholar 

  61. Van Thieu, N., Mirjalili, S.: Mealpy: An open-source library for latest meta-heuristic algorithms in python. J. Syst. Architect. 139, 102871 (2023). https://doi.org/10.1016/j.sysarc.2023.102871

    Article  Google Scholar 

  62. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191(11), 1245–1287 (2002). https://doi.org/10.1016/S0045-7825(01)00323-1

    Article  MathSciNet  Google Scholar 

  63. Zhong, R., Yu, J., Zhang, C., Munetomo, M.: Srime: a strengthened rime with latin hypercube sampling and embedded distance-based selection for engineering optimization problems. Neural Comput. Appl. (2024). https://doi.org/10.1007/s00521-024-09424-4

    Article  Google Scholar 

  64. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997). https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  65. Köppen, M.: The curse of dimensionality. In: 5th Online World Conference on Soft Computing in Industrial Applications (WSC5), vol. 1, pp. 4–8 (2000)

  66. Valizadeh, J., Boloukifar, S., Soltani, S., Jabalbarezi Hookerd, E., Fouladi, F., Andreevna Rushchtc, A., Du, B., Shen, J.: Designing an optimization model for the vaccine supply chain during the covid-19 pandemic. Expert Syst. Appl. 214, 119009 (2023). https://doi.org/10.1016/j.eswa.2022.119009

    Article  Google Scholar 

  67. Lyu, J., Zeng, Y., Zhang, R., Lim, T.J.: Placement optimization of uav-mounted mobile base stations. IEEE Commun. Lett. 21(3), 604–607 (2017). https://doi.org/10.1109/LCOMM.2016.2633248

    Article  Google Scholar 

  68. Abdullah, J., Rashid, T., Maaroof, B., Mirjalili, S.: Multi-objective fitness-dependent optimizer algorithm. Neural Comput. Appl. 35, 1–19 (2023). https://doi.org/10.1007/s00521-023-08332-3

    Article  Google Scholar 

  69. Gupta, S., Su, R.: Diversity-enhanced modified sine cosine algorithm and its application in solving engineering design problems. J. Comput. Sci. 72, 102105 (2023). https://doi.org/10.1016/j.jocs.2023.102105

    Article  Google Scholar 

  70. Hichem, H., Elkamel, M., Rafik, M., Mesaaoud, M.T., Ouahiba, C.: A new binary grasshopper optimization algorithm for feature selection problem. J. King Saud Univ. Comput. Inf. Sci. 34(2), 316–328 (2022). https://doi.org/10.1016/j.jksuci.2019.11.007

    Article  Google Scholar 

  71. Zhong, R., Zhang, E., Munetomo, M.: Cooperative coevolutionary surrogate ensemble-assisted differential evolution with efficient dual differential grouping for large-scale expensive optimization problems. Complex Intell. Syst. (2023). https://doi.org/10.1007/s40747-023-01262-6

    Article  Google Scholar 

  72. Obayya, M., Alhebri, A., Maashi, M., Salama, S., A., Mustafa Hilal, A., Alsaid, M.I., Osman, A.E., Alneil, A.A.: Henry gas solubility optimization algorithm based feature extraction in dermoscopic images analysis of skin cancer. Cancers (2023). https://doi.org/10.3390/cancers15072146

  73. Xie, L., Han, T., Zhou, H., Zhang, Z.-R., Han, B., Tang, A., Khalil, A.M.: Tuna swarm optimization: A novel swarm-based metaheuristic algorithm for global optimization. Intell. Neurosci. (2021). https://doi.org/10.1155/2021/9210050

    Article  Google Scholar 

  74. Zhong, R., Zhang, E., Munetomo, M.: Evolutionary multi-mode slime mold optimization: a hyper-heuristic algorithm inspired by slime mold foraging behaviors. J. Supercomput. (2024). https://doi.org/10.1007/s11227-024-05909-0

    Article  Google Scholar 

  75. Dokeroglu, T., Kucukyilmaz, T., Talbi, E.-G.: Hyper-heuristics: A survey and taxonomy. Comput. Ind. Eng. 187, 109815 (2024). https://doi.org/10.1016/j.cie.2023.109815

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JST SPRING Grant Number JPMJSP2119.

Author information

Authors and Affiliations

Authors

Contributions

RZ: conceptualization, methodology, investigation, writing—original draft, writing—review & editing, and funding acquisition. QF: investigation, methodology, formal analysis, and writing—review & editing. CZ: conceptualization and writing—review & editing. JY: writing—review & editing, and project administration.

Corresponding author

Correspondence to Jun Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, R., Fan, Q., Zhang, C. et al. Hybrid remora crayfish optimization for engineering and wireless sensor network coverage optimization. Cluster Comput (2024). https://doi.org/10.1007/s10586-024-04508-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04508-1

Keywords

Navigation