Skip to main content

Advertisement

Log in

Establishment and Image based evaluation of a New Preclinical Rat Model of Osteoblastic Bone Metastases

  • Technical Note
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Bone remodeling is disrupted in the presence of metastases and can present as osteolytic, osteoblastic or a mixture of the two. Established rat models of osteolytic and mixed metastases have been identified changes in structural and tissue-level properties of bone. The aim of this work was to establish a preclinical rat model of osteoblastic metastases and characterize bone quality changes through image-based evaluation. Female athymic rats (n = 22) were inoculated with human breast cancer cells ZR-75-1 and tumor development tracked over 3–4 months with bioluminescence and in-vivo µCT imaging. Bone tissue-level stereological features were quantified on ex-vivo µCT imaging. Histopathology verified the presence of osteoblastic bone. Bone mineral density distribution was assessed via backscattered electron microscopy. Newly formed osteoblastic bone was associated with reduced mineral content and increased heterogeneity leading to an overall degraded bone quality. Characterizing changes in osteoblastic bone properties is relevant to pre-clinical therapeutic testing and treatment planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table 1
Fig. 3

Similar content being viewed by others

Availability of data and material (data transparency):

The data files are with the authors and can be made available on request.

Code availability

not applicable.

References

  1. Wise-Milestone L et al (2012) Evaluating the effects of mixed osteolytic/osteoblastic metastasis on vertebral bone quality in a new rat model. J Orthop Res 30(5):817–823

    Article  Google Scholar 

  2. Kaneko TS et al (2004) Mechanical properties, density and quantitative CT scan data of trabecular bone with and without metastases. J Biomech 37(4):523–530

    Article  Google Scholar 

  3. Nazarian A et al (2008) Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis. Calcif Tissue Int 83(6):368–379

    Article  CAS  Google Scholar 

  4. Burke M et al (2017) Collagen fibril organization within rat vertebral bone modified with metastatic involvement. J Struct Biol 199(2):153–164

    Article  CAS  Google Scholar 

  5. Burke M et al (2016) Osteolytic and mixed cancer metastasis modulates collagen and mineral parameters within rat vertebral bone matrix. J Orthop Res

  6. Blouin S, Basle MF, Chappard D (2005) Rat models of bone metastases. Clin Exp Metastasis 22(8):605–614

    Article  Google Scholar 

  7. Rosol TJ et al (2003) Animal models of bone metastasis. Cancer 97 3 Suppl): 748 – 57

  8. Burke M et al (2017) The impact of metastasis on the mineral phase of vertebral bone tissue. J Mech Behav Biomed Mater 69:75–84

    Article  CAS  Google Scholar 

  9. Simmons JK et al (2015) Animal Models of Bone Metastasis. Vet Pathol 52(5):827–841

    Article  CAS  Google Scholar 

  10. Yin JJ et al (2003) A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci U S A 100(19):10954–10959

    Article  CAS  Google Scholar 

  11. Blouin S, Basle MF, Chappard D (2008) Interactions between microenvironment and cancer cells in two animal models of bone metastasis. Br J Cancer 98(4):809–815

    Article  CAS  Google Scholar 

  12. Weiner S, Wagner HD (1998) The Material Bone: Structure-Mechanical Function Relations. Annu Rev Mater Sci 28:271–298

    Article  CAS  Google Scholar 

  13. Currey JD, Brear K, Zioupos P (1996) The effects of ageing and changes in mineral content in degrading the toughness of human femora. J Biomech 29(2):257–260

    Article  CAS  Google Scholar 

  14. Currey JD (1969) The mechanical consequences of variation in the mineral content of bone. J Biomech 2(1):1–11

    Article  CAS  Google Scholar 

  15. Preininger B et al (2011) Spatial-temporal mapping of bone structural and elastic properties in a sheep model following osteotomy. Ultrasound Med Biol 37(3):474–483

    Article  Google Scholar 

  16. Tamada T et al (2005) Three-dimensional trabecular bone architecture of the lumbar spine in bone metastasis from prostate cancer: comparison with degenerative sclerosis. Skeletal Radiol 34(3):149–155

    Article  Google Scholar 

  17. Tiburtius S et al (2014) On the elastic properties of mineralized turkey leg tendon tissue: multiscale model and experiment. Biomech Model Mechanobiol 13(5):1003–1023

    Article  Google Scholar 

  18. Ruffoni D et al (2007) The bone mineralization density distribution as a fingerprint of the mineralization process. Bone 40(5):1308–1319

    Article  CAS  Google Scholar 

  19. Ruffoni D et al (2008) Effect of temporal changes in bone turnover on the bone mineralization density distribution: a computer simulation study. J Bone Miner Res 23(12):1905–1914

    Article  CAS  Google Scholar 

  20. Roschger P et al (2001) Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone 29(2):185–191

    Article  CAS  Google Scholar 

  21. Boyde A et al (1999) The Mineralization Density of Iliac Crest Bone from Children with Osteogenesis Imperfecta. Calcif Tissue Int 64(3):185–190

    Article  CAS  Google Scholar 

  22. Roschger P et al (2003) Constant mineralization density distribution in cancellous human bone. Bone 32(3):316–323

    Article  CAS  Google Scholar 

  23. Roux JP et al (2010) Contribution of trabecular and cortical components to biomechanical behavior of human vertebrae: an ex vivo study. J Bone Miner Res 25(2):356–361

    Article  Google Scholar 

  24. Hojjat SP, Whyne CM (2011) Automated quantitative microstructural analysis of metastatically involved vertebrae: effects of stereologic model and spatial resolution. Med Eng Phys 33(2):188–194

    Article  Google Scholar 

  25. Ghomashchi S et al (2021) Impact of radiofrequency ablation (RFA) on bone quality in a murine model of bone metastases. PLoS ONE 16(9):e0256076

    Article  CAS  Google Scholar 

  26. Nishiyama T et al (1994) Type XII and XIV collagens mediate interactions between banded collagen fibers in vitro and may modulate extracellular matrix deformability. J Biol Chem 269(45):28193–28199

    Article  CAS  Google Scholar 

  27. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(3 Suppl 3):S131–S139

    Article  CAS  Google Scholar 

  28. Guise TA et al (1996) Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest 98(7):1544–1549

    Article  CAS  Google Scholar 

  29. Bi XL, Yang W (2013) Biological functions of decorin in cancer. Chin J Cancer 32(5):266–269

    Article  CAS  Google Scholar 

  30. Weber CK et al (2001) Biglycan is overexpressed in pancreatic cancer and induces G1-arrest in pancreatic cancer cell lines. Gastroenterology 121(3):657–667

    Article  CAS  Google Scholar 

  31. Yen TY et al (2014) Using a cell line breast cancer progression system to identify biomarker candidates. J Proteom 96:173–183

    Article  CAS  Google Scholar 

  32. Li Y et al (2009) pH effects on collagen fibrillogenesis in vitro: Electrostatic interactions and phosphate binding. Mater Sci Engineering: C 29(5):1643–1649

    Article  CAS  Google Scholar 

  33. Nikitovic D et al (2012) The biology of small leucine-rich proteoglycans in bone pathophysiology. J Biol Chem 287(41):33926–33933

    Article  CAS  Google Scholar 

  34. Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21(2):195–214

    Article  CAS  Google Scholar 

  35. Roschger P et al (2008) Bone mineralization density distribution in health and disease. Bone 42(3):456–466

    Article  CAS  Google Scholar 

  36. Guise T (2010) Examining the metastatic niche: targeting the microenvironment. Semin Oncol 37(Suppl 2):S2–14

    Article  CAS  Google Scholar 

  37. Yoneda T et al (2011) Involvement of acidic microenvironment in the pathophysiology of cancer-associated bone pain. Bone 48(1):100–105

    Article  CAS  Google Scholar 

  38. Brandao-Burch A et al (2005) Acidosis inhibits bone formation by osteoblasts in vitro by preventing mineralization. Calcif Tissue Int 77(3):167–174

    Article  CAS  Google Scholar 

  39. Mahapatra PP, Mishra H, Chickerur NS (1982) Solubility of Hydroxyapatite and Related Thermodynamic Data. Thermochimica acta 52(1):333–336

    Article  CAS  Google Scholar 

  40. Kobayashi K et al (2015) Mitochondrial superoxide in osteocytes perturbs canalicular networks in the setting of age-related osteoporosis. Sci Rep 5:9148

    Article  CAS  Google Scholar 

  41. Perry SW, Burke RM, Brown EB (2012) Two-photon and second harmonic microscopy in clinical and translational cancer research. Ann Biomed Eng 40(2):277–291

    Article  Google Scholar 

Download references

Acknowledgements

Canadian Institute of Health Research (#156175), Ontario Graduate Scholarship in Science and Technology (OGSST).

Funding

Canadian Institute of Health Research (#156175), Ontario Graduate Scholarship in Science and Technology (OGSST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarete K. Akens.

Ethics declarations

Conflicts of interest/Competing interests:

The authors declare no conflict or competing interests.

Ethics approval

Institutional ethics approval was obtained for all animal experiments and the ARRIVE guidelines were followed.

Consent to participate

not applicable.

Consent for publication

not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghomashchi, S., Clement, A., Whyne, C.M. et al. Establishment and Image based evaluation of a New Preclinical Rat Model of Osteoblastic Bone Metastases. Clin Exp Metastasis 39, 833–840 (2022). https://doi.org/10.1007/s10585-022-10175-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-022-10175-6

Keywords

Navigation