Skip to main content

Advertisement

Log in

Mutational profiling of the RAS, PI3K, MET and b-catenin pathways in cancer of unknown primary: a retrospective study of the Hellenic Cooperative Oncology Group

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Cancer of unknown primary origin (CUP) had a poor prognosis, determined by clinico-histological characteristics, partly due to the lack of insights on its biology. We screened tumour DNA from 87 patients with CUP for CTNNB1 (coding exons 2,3,4,5), MET (coding exon 18), PIK3CA (coding exons 9,20), KRAS (coding exons 1,2), BRAF (coding exon 15) gene mutations by using dd-sequencing and evaluated their impact on prognosis. Mutated gene incidences in the 87 CUP cases were: KRAS 11 (12.6 %), BRAF 5 (5.7 %), PIK3CA 8 (9 %), MET 6 (6.7 %) and CTNNB1 18 (20.7 %). Several mutations in the KRAS gene were not the commonly encountered mutations in other solid tumours. Activating mutations were observed in 10.2 % in KRAS, 4.5 % in BRAF, 6.6 % in PIK3CA, 4.5 % in MET, and 19.5 % in CTNNB1. Activating mutations in PIK3CA coding exon 9 were inversely correlated with MET coding exon 18 activating mutations (p = 0.036). MET activating mutations were prognostic for poor Progression-Free Survival (median PFS 5 vs 9 months, p = 0.009) and Overall Survival (median OS 7 vs 20 months, p = 0.005). The complex profile of either CTNNB1 or MET mutations also had an adverse prognostic significance (median OS 11 vs 21 months, p = 0.015). No other gene mutation exhibited prognostic significance. In multivariate analysis, poor performance status, male gender, visceral disease and adenocarcinoma histology, but not gene mutations, were independently associated with poor patient outcome. CTNNB1 gene mutations are frequent, and along with MET mutations have an adverse prognostic effect in patients with CUP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pavlidis N, Pentheroudakis G (2012) Cancer of unknown primary site. Lancet 379:1428–1435

    Article  PubMed  Google Scholar 

  2. Pentheroudakis G (2012) CUP: looking for a missing primary site and its biology. Ann Oncol 23:278–281

    Article  Google Scholar 

  3. Pentheroudakis G, Briasoulis E, Pavlidis N (2007) Cancer of unknown primary site: missing primary or missing biology? Oncologist 12:418–425

    Article  PubMed  CAS  Google Scholar 

  4. Meritt MA, Cramer DW (2010) Molecular pathogenesis of endometrial and ovarian cancer. Cancer Biomark 9:287–305

    Google Scholar 

  5. Gregorieff A, Clevers H (2005) Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 19:877–890

    Article  PubMed  CAS  Google Scholar 

  6. Ying Y, Tao Q (2009) Epigenetic disruption of the Wnt/beta-catenin signaling pathway in human cancers. Epigenetics 4:307–312

    Article  PubMed  CAS  Google Scholar 

  7. Lorenzato A, Olivero M, Patane S et al (2002) Novel somatic mutations of the MET oncogene in human carcinoma metastases activating cell motility and invasion. Cancer Res 62:7025–7030

    PubMed  CAS  Google Scholar 

  8. Ding L, Getz G, Wheeler DA et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Lee J, Han S, Cho H et al (2000) A novel germ line juxtamembrane met mutation in human gastric cancer. Oncogene 19:4947–4953

    Article  PubMed  CAS  Google Scholar 

  10. Schmidt L, Junker K, Nakaigawa N et al (1999) Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 18:2343–2350

    Article  PubMed  CAS  Google Scholar 

  11. Di Renzo M, Olivero M, Martone T et al (2000) Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene 19:1547–1555

    Article  PubMed  Google Scholar 

  12. Liu P, Cheng H, Santiago S et al (2012) Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway-dependent and –independent mechanisms. Nat Med 17:1116–1120

    Article  Google Scholar 

  13. Almoguera C, Shibata D, Forrester K et al (1988) Most human carcinomas of the exocrine pancreas contain mutant C-K-RAS genes. Cell 53:549–554

    Article  PubMed  CAS  Google Scholar 

  14. Bell SM, Scott N, Cross D et al (1993) Prognostic value of p53 overexpression and c-ki-ras gene mutations in colorectal cancer. Gastroenterology 104:57–64

    PubMed  CAS  Google Scholar 

  15. Rodenhuis S, Slebos RJ, Boot AJ et al (1988) Incidence and possible clinical significance of K-ras oncogene activation in adenocarcinoma of the human lung. Cancer Res 48:5738–5741

    PubMed  CAS  Google Scholar 

  16. Nikiforov YE (2011) Molecular analysis of thyroid tumors. Mod Pathol 24:S34–S43

    Article  PubMed  CAS  Google Scholar 

  17. Rajalingam K, Schreek R, Rapp UR et al (2007) Ras oncogenes and their downstream targets. Biochim Biophys Acta 1773:1177–1195

    Article  PubMed  CAS  Google Scholar 

  18. Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  PubMed  CAS  Google Scholar 

  19. Fizazi K, Greco FA, Pavlidis N, Pentheroudakis G (2011) Cancers of unknown primary site: ESMO Clinical Practice Guidelines for Diagnosis, treatment and follow-up. Ann Oncol 22(Suppl. 6):64–68

    Google Scholar 

  20. Gatalica Z. Molecular profiling of cancers of unknown primary site (CUP): Paradigm shift in management of CUP. Presented at ECCO Cancer Congress 2013: Abstract LBA39

  21. Hainsworth JD, Greco FA (2014) Gene expression profiling in patients with carcinoma of unknown primary site: from translational research to standard of care. Virchows Arch 464(4):393–402. doi:10.1007/s00428-014-1545-2

    Article  PubMed  CAS  Google Scholar 

  22. Heinemann V, Douillard JY, Ducreux M, Peeters M (2013) Targeted therapy in metastatic colorectal cancer-an example of personalized medicine in action. Cancer Treat Rev 39:592–601

    Article  PubMed  CAS  Google Scholar 

  23. Stella GM, Luisetti M, Rozzi E, Comoglio PM (2013) Oncogenes in non-small-cell lung cancer: emerging connections and novel therapeutic dynamics. Lancet Respir Med 3:251–261

    Article  Google Scholar 

  24. Stella GM, Benvenutti S, Gramaglia D et al (2011) MET mutations in cancer of unknown primary origon (CUP’s). Hum Mutat 32:44–50

    Article  PubMed  CAS  Google Scholar 

  25. Hale KS, Wang H, Karanth S, et al (2012) Mutation profiling in patients with carcinoma of unknown primary using the Sequenom MassARRAY system. J Clin Oncol 30(Suppl; abstr 4131)

  26. Ilyas M, Tomlinson I, Rowan A et al (1997) β-catenin mutations in cell lines established from human colorectal cell cancers. Proc Natl Acad Sci 94:10330–10334

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Byron SA, Gartside M, Powell MA et al (2012) FGFR2 point mutations in 466 endometrioid endometrial tumors: relationship with MSI, KRAS, PIK3CA, CTNNB1 mutations and clinicopathological features. PLoS ONE 7:e30801

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Ma PC, Tretiakova MS, MacKinnon AC et al (2008) Expression and mutational analysis of MET in human solid cancers. Genes Chromosomes Cancer 47:1025–1037

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Stella GM, Senetta R, Cassenti A et al (2012) Cancers of unknown primary origin: current perspectives and future therapeutic strategies. J Trans Med 10:12

    Article  Google Scholar 

  30. Kim KH, Seol HJ, Kim EH et al (2013) Wnt/β-catenin signaling is a key downstream mediator of MET signaling in glioblastoma stem cells. Neuro Oncol 2:161–171

    Article  Google Scholar 

  31. Huang FI, Chen YL, Chang CN et al (2012) Hepatocyte growth factor activates Wnt pathway by transcriptional activation of LEF1 to facilitate tumor invasion. Carcinogenesis 33:1142–1148

    Article  PubMed  CAS  Google Scholar 

  32. Purcell R, Childs M, Maibach R et al (2011) HGF/c-MET related activation of β-catenin in hepatoblastoma. J Exp Clin Cancer Res 30:96

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Siemens H, Neumann J, Jackstadt R et al (2013) Detection of miR-34a promoter methylation in combination with elevated expression of c-MET and β-catenin predicts distant metastasis of colon cancer. Clin Cancer Res 19:710–720

    Article  PubMed  CAS  Google Scholar 

  34. Miller TW, Rexer BN, Garett J et al (2011) Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Br Cancer Res 13:224

    Article  CAS  Google Scholar 

  35. Perez-Tenorio G, Alkhori L, Olsson B et al (2007) PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. Cancer Res 13:3577–3584

    CAS  Google Scholar 

  36. Bamford S, Dawson E, Forbes E et al (2004) The COSMIC (Catalogue of somatic mutations in Cancer) database and website. Br J Cancer 91:355–358

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Andreyev HJ, Norman AR, Cunnigham D et al (1998) Kirsten ras mutations in patients with colorectal cancer: the multicenter RASCAL study. J Natl Cancer Inst 90:675–684

    Article  PubMed  CAS  Google Scholar 

  38. Nash GM, Gimbel M, Shia J et al (2010) KRAS mutation correlates with accelerated metastatic progression in patients with colorectal liver metastases. Ann Surg Oncol 17:572–578

    Article  PubMed  Google Scholar 

  39. Di Nicolantonio F, Martini M, Molinari F et al (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26:5705–5712

    Article  PubMed  Google Scholar 

  40. Vaughn CP, Zobell SD, Furtado LV et al (2011) Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer. Genes Chromosom Cancer 50:307–312

    Article  PubMed  CAS  Google Scholar 

  41. Ardekani SG, Jafarnejad SM, Tan L et al (2012) The prognostic value of BRAF mutation in colorectal cancer and melanoma: a systematic review and meta-analysis. PLoS ONE 7:e47054

    Article  CAS  Google Scholar 

  42. Solt DB, Rosen N (2011) Resistance in BRAF inhibition in melanomas. N Eng J Med 364:772–774

    Article  Google Scholar 

  43. Huang T, Zhuge J, Zhang WW et al (2013) Sensitive detection of BRAF V600 mutation by Amplification Refractory Mutation System (ARMS)-PCR. Biomark Res 1:3

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research work has been funded by Novartis Hellas. The authors confirm independence from the sponsors; the content of the article has not been influenced by the sponsors in any way.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pentheroudakis.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pentheroudakis, G., Kotteas, E.A., Kotoula, V. et al. Mutational profiling of the RAS, PI3K, MET and b-catenin pathways in cancer of unknown primary: a retrospective study of the Hellenic Cooperative Oncology Group. Clin Exp Metastasis 31, 761–769 (2014). https://doi.org/10.1007/s10585-014-9666-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-014-9666-1

Keywords

Navigation