Skip to main content
Log in

Climate change projections for building energy simulation studies: a CORDEX-based methodological approach to manage uncertainties

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

We propose a comprehensive methodological approach to address uncertainties in building energy simulation (BES) studies within a climate change context. Drawing upon expertise from the climate community, our approach aims to improve the reliability of climate-dependent BES for sustainable building design studies. The methodology focuses on creating weather files that accurately retain the climate variability from CORDEX high-frequency climate data, and performing multiple BES (conducted with climatologies from various climate models and emissions scenarios) while removing the climate models biases. The robustness of the results is assessed through statistical analysis, and an uncertainty range is attributed to future energy demand estimations. This approach is illustrated using a representative prototype of a social house located in central-eastern Argentina. The evaluation specifically focuses on assessing the influence of climate change projections on cooling and heating energy demand. We systematically assessed uncertainties related to climate scenarios, seasonality, and building design sensitivity. Our exercise highlight that uncertainty levels rise with higher emissions scenarios. Within our case study, the cooling (heating) energy demand exhibits substantial variations, ranging from 27-37 (303-330) MJ/m² in a moderate emissions context to 51-70 (266-326) MJ/m² in a high emissions scenario. Notably, improvements in building efficiency correlate with reduced uncertainty and, in the context of higher emissions, the projected energy demand can range between 24-37 (201-243) MJ/m². Finally, a discussion is provided on the added value of the proposed methodology compared to solely utilizing a single climate projection file in BES, when uncertainties within climate projections remain unassessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The weather files generated during the current study are available from the corresponding author on request.

References

  • Abungba JA, Adjei KA, Gyamfi C, Odai SN, Pingale SM, Khare D (2022) Implications of Land Use/Land Cover Changes and Climate Change on Black Volta Basin Future Water Resources in Ghana. Sustainability 14:12383. https://doi.org/10.3390/su141912383

    Article  Google Scholar 

  • Ambrizzi T, Reboita MS, da Rocha RP, y, Llopart M (2019) The state of the art and fundamental aspects of regional climate modeling in South America: Climate modeling in South America. Annals of the New York Academy of Sciences, 1436(1):98–120. https://doi.org/10.1111/nyas.13932

  • Belcher S, Hacker J, Powell D (2005) Constructing design weather data for future climates. Build Serv Eng Res Tech 26(1):49–61. https://doi.org/10.1191/0143624405bt112oa

    Article  Google Scholar 

  • Blázquez J, Nuñez MN (2013) Analysis of uncertainties in future climate projections for South America: comparison of WCRP-CMIP3 and WCRP-CMIP5 models. Clim Dyn 41(3–4):1039–1056. https://doi.org/10.1007/s00382-012-1489-7

    Article  Google Scholar 

  • Bracht MK, Olinger MS, da Costa VAC, Melo AP, Lamberts R (2023) Influence of future weather files on NBR15575 performance indicators. Anais do VII Congresso Latino-Americano de Simulação de Edifícios, pp. 99–104. ISBN: 978-65-992964-4-4

  • Bravo Dias J, da Graça C, G., and, Soares PMM (2020a) Comparison of methodologies for generation of future weather data for building thermal energy simulation. Energy Build 206:109556. https://doi.org/10.1016/j.enbuild.2019.109556

    Article  Google Scholar 

  • Bravo Dias J, da Graça C, G., and, Soares PMM (2020b) The shape of days to come: effects of Climate Change on Low Energy buildings. Build Environ 181:107125. https://doi.org/10.1016/j.buildenv.2020.107125

    Article  Google Scholar 

  • Cabeza L, Bai Q, Bertoldi P, Kihila J, Lucena A, Mata E, Mirasgedis S, Novikova A, Saheb Y (2022) In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA

  • Carril AF, Flombaum P, Menéndez CG (2023) Datos climáticos y prácticas recomendadas para proyectar cambios en la distribución de especies. Darwiniana Nueva Serie 11(1):367–389. https://doi.org/10.14522/darwiniana.2023.111.1094

    Article  Google Scholar 

  • Carril AF, Menéndez CG, Remedio ARC, Robledo F, Sörensson A, Tencer B, Boulanger J-P, de Castro M, Jacob D, Le Treut H, Li L Z. X., Penalba, O, Pfeifer S, Rusticucci M, Salio P, Samuelsson P, Sanchez E, Zaninelli P (2012) Performance of a multi-RCM ensemble for South Eastern South America. Clim Dyn 39(12):2747–2768. https://doi.org/10.1007/s00382-012-1573-z

  • Chan A (2011) Developing future hourly weather files for studying the impact of climate change on building energy performance in Hong Kong. Energy Build 43(10):2860–2868. https://doi.org/10.1016/j.enbuild.2011.07.003

    Article  Google Scholar 

  • Chen D, Rojas M, Samset BH, Cobb K, Diongue Niang A, Edwards P, Emori S, Faria SH, Hawkins E, Hope P, Huybrechts P, Meinshausen M, Mustafa SK, Plattner G-K, Tréguier A-M (2021) Framing, Context, and Methods. In: Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate Change 2021: The Physical Science Basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 147–286. doi:https://doi.org/10.1017/9781009157896.003.

  • Cheng L, Huang C (2019) Assessing the health effects of extreme temperature and development of adaptation strategies to climate change in selected countries in the Asia-Pacific region. APN Sci Bull 9(1). https://doi.org/10.30852/sb.2019.854

  • Ciancio V, Salata F, Falasca S, Curci G, Golasi I, de Wilde P (2020) Energy demands of buildings in the Framework of Climate Change: An Investigation across Europe. Sustainable Cities Soc 60:102213. https://doi.org/10.1016/j.scs.2020.102213

    Article  Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013): Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Intergovernmental Panel on Climate Change, Cambridge University Press, New York NY USA, pp. 1029–1136

  • de la Vara A, Gutiérrez C, González-Alemán JJ, Gaertner M (2020) Á. Intercomparison Study of the Impact of Climate Change on Renewable Energy Indicators on the Mediterranean Islands. Atmosphere 11(10):1036. https://doi.org/10.3390/atmos11101036

    Article  Google Scholar 

  • Dodman D, Hayward B, Pelling M, Castan Broto V, Chow W, Chu E, Dawson R, Khirfan L, McPhearson T, Prakash A, Zheng Y, Ziervogel G (2022) Cities, settlements and key infrastructure. In: Pörtner -O, Roberts DC, Tignor M, Poloczanska ES, Mintenbeck K, Alegría A, Craig M, Langsdorf S, Löschke S, Möller V, Rama AOB (eds) Climate Change 2022: impacts, adaptation, and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H, vol 1040. Cambridge University Press, Cambridge, UK and New York, NY, USA, p 907. doi:https://doi.org/10.1017/9781009325844.008.

    Chapter  Google Scholar 

  • DoE (2020a) EnergyPlus 9.1 Engineering reference: the encyclopedic reference to Energy-Plus calculations. U.S. Department of Energy

  • DOE (2020b) EnergyPlus 9.3 Auxiliary Programs. U.S. Department of Energy

  • DOE (2020c) EnergyPlus 9.3 EnergyPlus input/output references. U.S. Department of Energy

  • Erbs D, Klein S, Duffie J (1982) Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Sol Energy 28(4):293–302. https://doi.org/10.1016/0038-092X(82)90302-4

    Article  Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9(5):1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

    Article  Google Scholar 

  • Falco M, Carril AF, Menéndez CG, Zaninelli PG, Li LZX (2019) Assessment of CORDEX simulations over South America: added value on seasonal climatology and resolution considerations. Clim Dyn 52:4771–4786. https://doi.org/10.1007/s00382-018-4412-z

    Article  Google Scholar 

  • Falco M, Carril AF, Li LZX, Cabrelli C, Menéndez CG (2020) The potential added value of Regional Climate models in South America using a multiresolution approach. Clim Dyn 54:1553–1569. https://doi.org/10.1007/s00382-019-05073-9

    Article  Google Scholar 

  • Falloon P, Challinor A, Dessai S, Hoang L, Johnson J, Koehler A-K (2014) Ensembles and uncertainty in climate change impacts. Front Environ Sci 2:33. https://doi.org/10.3389/fenvs.2014.00033

    Article  Google Scholar 

  • Flato G, Marotzke J, Abiodun B, Braconnot P, Chou S, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution ofWorking Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. pp. 741–866. doi: https://doi.org/10.1017/CBO9781107415324.020

  • Flores-Larsen S, Filippín C, Barea G (2019) Impact of climate change on energy use and bioclimatic design of residential buildings in the 21st century in Argentina. Energy Build 184:216–229. https://doi.org/10.1016/j.enbuild.2018.12.015

    Article  Google Scholar 

  • Ganem C, Barea GJ (2021) A methodology for assessing the impact of climate change on building energy consumption. En Palme, M. y Salvati, A., editores, Urban Microclimate Modelling for Comfort and Energy Studies, pp. 363–381. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-65421-417

  • Giorgi F (2006) Regional Climate modeling: Status and perspectives. J De Phys IV France 139:101–118. https://doi.org/10.1051/jp4:2006139008

    Article  Google Scholar 

  • Giorgi F (2010) Uncertainties in climate change projections, from the global to the regional scale. EPJ Web Conferences 9:115–129. https://doi.org/10.1051/epjconf/201009009

    Article  Google Scholar 

  • Giorgi F (2019) Thirty years of regional climate modeling: where are we and where are we going next? J Geophys Research: Atmos 124:5696–5723. https://doi.org/10.1029/2018JD030094

    Article  Google Scholar 

  • Giorgi F, Gutowski WJ (2015) Regional dynamical downscaling and the cordex initiative. Annu Rev Environ Resour 40(1):467–490. https://doi.org/10.1146/annurev-environ-102014-021217

    Article  Google Scholar 

  • Giorgi F, Mearns LO (2002) Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the reliability ensemble averaging (REA) method. J Clim 15(10):1141–1158. https://doi.org/10.1175/1520-0442(2002)015>1141:COAURA<2.0.CO;2

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla M, Bi X, Elguindi N, Diro G, Nair V, Giuliani G, Turuncoglu U, Cozzini S, Güttler I, O’Brien T, Tawfik A, Shalaby A, Zakey A, Steiner A, Stordal F, Sloan L, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Climate Res 52:7–29. https://doi.org/10.3354/cr01018

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16(2–3):147–168. https://doi.org/10.1007/s003820050010

    Article  Google Scholar 

  • Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting – I. Basic concept. Tellus A: Dynamic Meteorol Oceanogr 57(3):219–233. https://doi.org/10.3402/tellusa.v57i3.14657

    Article  Google Scholar 

  • Hall I, Prairie R, Anderson H, Boes E (1978) Generation of a typical meteorological year. En Proceedings of the 1978 annual meeting of the American Section of the International Solar Energy Society, pp. 669–671

  • Han X, Deb P, Magliocca NR, Nadolnyak D, Moftakhari H, Pathak R, Moradkhani H (2023) Water trading as a tool to combat economic losses in agriculture under climate change. Sustainable Sci 18:1415–1428. https://doi.org/10.1007/s11625-023-01298-0

    Article  Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–1108. https://doi.org/10.1175/2009BAMS2607.1

    Article  Google Scholar 

  • Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of Regional Precipitation Change. Clim Dyn 37:407–418. https://doi.org/10.1007/s00382-010-0810-6

    Article  Google Scholar 

  • Hay LE, Wilby RL, Leavesley GH (2000) A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J Am Water Resour Assoc 36(2):387–397. https://doi.org/10.1111/j.1752-1688.2000.tb04276.x

    Article  Google Scholar 

  • Heavens N, Ward D, Natalie M (2013) Studying and projecting Climate Change with Earth System models. Nat Educ Knowl 4(5):4

    Google Scholar 

  • Herrera M, Natarajan S, Coley DA, Kershaw T, Ramallo-González AP, Eames M, Fosas D, Wood M (2017) A review of current and future weather data for building simulation. Build Serv Eng Res Tech 38(5):602–627. https://doi.org/10.1177/0143624417705937

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Biavati G, Horányi A, Muñoz Sabater J, Nicolas J, Peubey C, Radu R, Rozum I, Schepers D, Simmons A, Soci C, Dee D, Thépaut J-N (2018) ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on 01-09-2019). https://doi.org/10.24381/cds.adbb2d47

  • Ho JT, Thompson JR, Brierley C (2016) Projections of hydrology in the Tocantins-Araguaia Basin, Brazil: uncertainty assessment using the CMIP5 ensemble. Hydrol Sci J 61(3):551–567. https://doi.org/10.1080/02626667.2015.1057513

    Article  Google Scholar 

  • IRAM 11601 (2002) Aislamiento térmico De Edificios. Propiedades térmicas De Los componentes y elementos de construcción en régimen estacionario. Instituto Argentino de Normalización y Certificación

  • IRAM 11604 (2001) Aislamiento térmico De Edificios. Verificación De sus condiciones higrotérmicas. Ahorro De energía en calefacción. Coeficiente volumétrico G De pérdidas de calor. Cálculo Y valores límite. Normas de Acondicionamiento Térmico de Edificios, Instituto

    Google Scholar 

  • IRAM 11900 (2017) Prestaciones energéticas en viviendas. Método De Cálculo. Instituto Argentino de Normalización y Certificación

  • Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model REMO. Meteorol Atmos Phys 63(1–2):119–129. https://doi.org/10.1007/BF01025368

    Article  Google Scholar 

  • Jentsch MF, Bahaj AS, James PA (2008) Climate change future proofing of buildings—generation and assessment of building simulation weather files. Energy Build 40(12):2148–2168. https://doi.org/10.1016/j.enbuild.2008.06.005

    Article  Google Scholar 

  • Jentsch MF, James PA, Bourikas L, Bahaj AS (2013) Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renewable Energy 55:514–524. https://doi.org/10.1016/j.renene.2012.12.049

    Article  Google Scholar 

  • Katz RW, Craigmile PF, Guttorp P, Haran M, Sansó B, Stein ML (2013) Uncertainty analysis in climate change assessments. Nat Clim Change 3(9):769–771. https://doi.org/10.1038/nclimate1980

    Article  Google Scholar 

  • Kendon EJ, Rowell DP, Jones RG, y, Buonomo E (2008) Robustness of future changes in local precipitation extremes. Journal of Climate, 21(17):4280–4297. https://doi.org/10.1175/2008JCLI2082.1

  • Kikumoto H, Ooka R, Arima Y, Yamanaka T (2015) Study on the future weather data considering the global and local climate change for building energy simulation. Sustainable Cities Soc 14:404–413. https://doi.org/10.1016/j.scs.2014.08.007

    Article  Google Scholar 

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23(10):2739–2758. https://doi.org/10.1175/2009JCLI3361.1

    Article  Google Scholar 

  • Kyselý J, Dubrovský M (2005) Simulation of extreme temperature events by a stochastic weather generator: effects of interdiurnal and interannual variability reproduction. Int J Climatol 25(2):251–269. https://doi.org/10.1002/joc.1120

    Article  Google Scholar 

  • Lee J-Y, Marotzke J, Bala G, Cao L, Corti S, Dunne J, Engelbrecht F, Fischer E, Fyfe J, Jones A, Maycock A, Mutemi J, Ndiaye O, Panickal S, Zhou T (2021) Future Global Climate: Scenario-Based Projections and Near-Term Information. In: Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate Change 2021: The Physical Science Basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 553–672. doi:https://doi.org/10.1017/9781009157896.006.Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-

  • Lenz CJ, Früh B, Adalatpanah FD (2017) Is there potential added value in COSMO–CLM forced by ERA reanalysis data? Clim Dyn 49:4061–4074. https://doi.org/10.1007/s00382-017-3562-8

    Article  Google Scholar 

  • Liu C, Coley D (2015) Overheating risk of UK dwellings under a changing climate. Energy Procedia 78:2796–2801. https://doi.org/10.1016/j.egypro.2015.11.628

    Article  Google Scholar 

  • Liu S, Kwok YT, Lau KK-L, Tong HW, Chan PW, Ng E (2020) Development and application of future design weather data for evaluating the building thermalenergy performance in subtropical Hong Kong. Energy Build 209:109696. https://doi.org/10.1016/j.enbuild.2019.109696

    Article  Google Scholar 

  • Lucon O, Ürge Vorsatz D, Zain Ahmed A, Akbari H, Cabeza L, Eyre N, Gadgil A, Harvey L, Jiang Y, Liphoto E, Mirasgedis S, Murakam S, Parikh J, Pyke C, amd, Vilariño M (2014) Buildings. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Mauree D, Naboni E, Coccolo S, Perera A, Nik VM, y, Scartezzini J-L (2019) A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities. Renewable and Sustainable Energy Reviews, 112:733–746. https://doi.org/10.1016/j.rser.2019.06.005

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109(1–2):213–241. https://doi.org/10.1007/s10584-011-0156-z

    Article  CAS  Google Scholar 

  • Milinski S, Maher N, Olonscheck D (2020) How large does a large ensemble need to be? Earth Sys Dyn 11:885–901. https://doi.org/10.5194/esd-11-885-2020

    Article  Google Scholar 

  • Moazami A, Carlucci S, Geving S (2017) Critical Analysis of Software Tools Aimed at Generating Future Weather Files with a view to their use in Building Performance Simulation. Energy Procedia 132:640–645. https://doi.org/10.1016/j.egypro.2017.09.701

    Article  Google Scholar 

  • Nakicenovic N, Swart R (2000) Special report on emissions scenarios (SRES) – a special report of working group III of the intergovernmental panel on climate change. Cambridge University Press. ISBN-10: 9780521800815

  • Nik VM (2016) Making energy simulation easier for future climate – synthesizing typical and extreme weather data sets out of regional climate models (Rcms). Appl Energy 177:204–226. https://doi.org/10.1016/j.apenergy.2016.05.107

    Article  Google Scholar 

  • P.Tootkaboni M, Ballarini I, Zinzi M, Corrado V (2021) A comparative analysis of different future weather data for building energy performance simulation. Climate 9(2):37. https://doi.org/10.3390/cli9020037

    Article  Google Scholar 

  • Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energy Build 40(3):394–398. https://doi.org/10.1016/j.enbuild.2007.03.007

    Article  Google Scholar 

  • Porritt S, Shao L, Cropper P, Goodier C (2011) Adapting dwellings for heat waves. Sustainable Cities Soc 1(2):81–90. https://doi.org/10.1016/j.scs.2011.02.004

    Article  Google Scholar 

  • Prein AF, Gobiet A, Truhetz H, Keuler K, Goergen K, Teichmann C, Maule F, van Meijgaard C, Déqué E, Nikulin M, Vautard G, Colette R, Kjellström A, E. and, Jacob D (2016) Precipitation in the EURO-CORDEX 0.11◦ and 0.44◦ simulations: high resolution, high benefits? Clim Dyn 46(1–2):383–412

    Article  Google Scholar 

  • Remund J, Müller S, Schmutz M, Barsotti D, Graf P, Cattin R (2020) Meteonorm Handbook part I: Software. Version 8.0. https://meteonorm.com/en/meteonormdocuments

  • Rummukainen M (2016) Added value in regional climate modeling. Wiley Interdisciplinary Reviews: Clim Change 7(1):145–159

    Google Scholar 

  • Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A 63(1):4–23. https://doi.org/10.1111/j.1600-0870.2010.00478.x

    Article  Google Scholar 

  • Sánchez E, Solman S, Remedio ARC, Berbery H, Samuelsson P, Da Rocha RP, Mourão C, Li L, Marengo J, de Castro M, Jacob D (2015) Regional climate modelling in CLARIS-LPB: a concerted approach towards twentyfirst century projections of regional temperature and precipitation over South America. Clim Dyn 45(7–8):2193–2212. https://doi.org/10.1007/s00382-014-2466-0

    Article  Google Scholar 

  • Semenov M, Barrow E (2002) LARS-WG. A stochastic weather generator for use in climate impact studies. http://resources.rothamsted.ac.uk/sites/default/files/groups/masmodels/download/LARS-WG-Manual.pdf

  • Semenov MA, Barrow EM, (1997) Use of a stochastic weather generator in the development of climate change scenarios. Clim Change 35(4):397–414. https://doi.org/10.1023/A:1005342632279

    Article  Google Scholar 

  • Semenov MA, Brooks RJ, Barrow EM, Richardson CW (1998) Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate Res 10(2):95–107

    Article  Google Scholar 

  • Seneviratne SI, Zhang X, Adnan M, Badi W, Dereczynski C, Di Luca A, Ghosh S, Iskandar I, Kossin J, Lewis S, Otto F, Pinto I, Satoh M, Vicente-Serrano SM, Wehner M, Zhou B (2021) Weather and Climate Extreme Events in a Changing Climate. In: Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate Change 2021: The Physical Science Basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1513–1766. doi:https://doi.org/10.1017/9781009157896.013.

  • Silvero F, Lops C, Montelpare S, Rodrigues F (2019) Impact assessment of climate change on buildings in Paraguay—Overheating risk under different future climate scenarios. Build Simul 12(6):943–960. https://doi.org/10.1007/s12273-019-0532-6

    Article  Google Scholar 

  • Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Wang W, Huang X-Y, Duda M (2008) A description of the advanced research WRF version 3. Technical report, UCAR/NCAR

  • Solman SA, Sanchez E, Samuelsson P, da Rocha RP, Li L, Marengo J, Pessacg NL, Remedio ARC, Chou SC, Berbery H, Le Treut H, de Castro M, Jacob D (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn 41(5–6):1139–1157. https://doi.org/10.1007/s00382-013-1667-2

    Article  Google Scholar 

  • Song X, Ye C (2017) Climate change adaptation pathways for residential buildings in southern China. Energy Procedia 105:3062–3067. https://doi.org/10.1016/j.egypro.2017.03.635

    Article  Google Scholar 

  • Touseef M, Chen L, Chen H, Gabriel HF, Yang W, Mubeen A (2023) Enhancing Streamflow modeling by integrating GRACE Data and Shared Socio-Economic pathways (SSPs) with SWAT in Hongshui River Basin, China. Remote Sens 15:2642. https://doi.org/10.3390/rs15102642

    Article  Google Scholar 

  • Tovar C, Carril AF, Gutiérrez AG, Ahrends A, Fita L, Zaninelli P, Flombaum P, Abarzúa AM, Alarcón D, Aschero V, Báez S, Barros A, Carilla J, Ferrero ME, Flantua SG, Gonzáles P, Menéndez CG, Pérez-Escobar OA, Pauchard A, Ruscica RC, Särkinen T, Sörensson AA, Srur A, Villalba R, Hollingsworth PM (2022) Understanding climate change impacts on biome and plant distributions in the Andes: challenges and opportunities. J Biogeogr 49:1420–1442. https://doi.org/10.1111/jbi.14389

    Article  Google Scholar 

  • Triana MA, Lamberts R, Sassi P (2018) Should we consider climate change for Brazilian social housing? Assessment of energy efficiency adaptation measures. Energy Build 158:1379–1392. https://doi.org/10.1016/j.enbuild.2017.11.003

    Article  Google Scholar 

  • Wang H, Chen Q (2014) Impact of climate change heating and cooling energy use in buildings in the United States. Energy Build 82:428–436. https://doi.org/10.1016/j.enbuild.2014.07.034

    Article  Google Scholar 

  • Wang X, Chen D, Ren Z (2010) Assessment of climate change impact on residential building heating and cooling energy requirement in Australia. Build Environ 45(7):1663–1682. https://doi.org/10.1016/j.buildenv.2010.01.022

    Article  Google Scholar 

  • Wang L, Zhang J, Shu Z, Bao Z, Jin J, Liu C, He R, Liu Y, Wang G (2023) Assessment of Future Eco-hydrological Regime and uncertainty under Climate Changes over an Alpine Region. J Hydrology 620 Part A 129451. https://doi.org/10.1016/j.jhydrol.2023.129451

  • Wilks D (2019) Statistical methods in the atmospheric sciences. Fourth edition. International geophysics series. Academic Press, United States of America

  • Zhai ZJ, Helman JM (2019) Implications of climate changes to building energy and design. Sustainable Cities Soc 44:511–519. https://doi.org/10.1016/j.scs.2018.10.043

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A.R.C. Remedio, G. Nikulin, J. Fernández and R.P. da Rocha for providing the high frequency outputs of climate models. We also wish to thank the CPA staff from CIMA Institute for their generous support and technical assistance. We especially thank Rodrigo Marquez, Claudio Mattera, Paula Richter, Alfredo Rolla, Pablo Roselli, and Gabriel Vieytes.

Funding

This work was partially supported by Consejo Nacional de Investigaciones Científicas y Técnicas [Project PIP-112-2020-0102141-CO]; and Universidad Nacional de Rosario [Project PID-UNR SECYT 80020190100069UR]; and Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación [Project PICT-2021-I-A-01097].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Tanea Coronato. The first draft of the manuscript was written by Tanea Coronato and all authors commented on previous versions of the manuscript. The funding acquisition was obtained by Andrea F. Carril and Rita Abalone. The study was supervised by Andrea F. Carril. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tanea Coronato.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coronato, T., Zaninelli, P.G., Abalone, R. et al. Climate change projections for building energy simulation studies: a CORDEX-based methodological approach to manage uncertainties. Climatic Change 177, 43 (2024). https://doi.org/10.1007/s10584-024-03710-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10584-024-03710-9

Keywords

Navigation