Skip to main content

Advertisement

Log in

Potential Carbon Gas Production in Southern Brazil Wetland Sediments: Possible Implications of Agricultural Land Use and Warming

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Methane (CH4) and carbon dioxide (CO2) are greenhouse gases (GHG) important in the carbon cycle that exchanges carbon between ecosystems and the atmosphere. To determine how rice paddy fields and temperature affect the carbon budget, we experimentally estimated CH4 and CO2 concentrations and production in sediments from natural and rice wetlands over a temperature gradient. Moreover, we estimated how much GHG production rates would increase in these ecosystems, according to the IPCC projections for temperature rise caused by global warming. Our results showed that the concentrations and potential production rates of GHG showed no significant differences between natural and rice wetlands, although the accumulation of organic matter and nutrients was higher in natural wetland sediments. However, temperature elevation played a significant role in the rise of gas production rates. According to our results, projected increased atmospheric temperature may promote increases in the rates of production and concentrations of carbon gases. The potential carbon gases production in the scenario of atmospheric warming indicated that CH4 (18.91%) may be higher than CO2 (4.54%), mainly in rice wetlands. This reinforces the importance of natural wetland conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen SE, Gresham HN, Parkinson WJA, Quarmby C (1974) Chemical analysis of ecological materials. Blackwell Scientific Publications, United Kingdom

    Google Scholar 

  • Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cycles 18:1–12. https://doi.org/10.1029/2004GB002238

    Article  CAS  Google Scholar 

  • Bodelier PLE (2011) Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils. Current Opinion in Environment Sustainability 3:379–388

    Article  Google Scholar 

  • Bodker JE, Turner RE, Tweel A, Schulz C, Swarzenski C (2015) Nutrient-enhanced decomposition of plant biomass in a freshwater wetland. Aquatic Botany 127:44–52

    Article  CAS  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26(4):889–916

    Article  Google Scholar 

  • Canterle ERB, Motta-Marques D, Rodrigues LHR (2013) Development of temporary subtropical wetlands induces higher gas production. Frontiers in Microbiology 4:1–9. https://doi.org/10.3389/fmicb.2013.00056

    Article  CAS  Google Scholar 

  • Cao M, Marshall S, Gregson K (1996) Global carbon exchange and methane emissions from natural wetlands: application of a process-based model. Journal of Geophysical Research 101:14,399–14,414

    Article  CAS  Google Scholar 

  • Cole JJ, Prairie IT, Caraco NF, Mc Dowell WH, Tranvik L, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184. https://doi.org/10.1007/s10021-006-9013-8

    Article  CAS  Google Scholar 

  • Core Team R (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org/

    Google Scholar 

  • Cunha-Santino MB, Bianchini I Jr (2013) Tropical macrophyte degradation dynamics in freshwater sediments: relationship to greenhouse gas production. Journal of Soils and Sediments 13:1461–1468. https://doi.org/10.1007/s11368-013-0735-x

    Article  CAS  Google Scholar 

  • Duc NT, Crill P, Bastviken D (2010) Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments. Biogeochemistry 100:185–196. https://doi.org/10.1007/s10533-010-9415-8

    Article  CAS  Google Scholar 

  • Furlanetto LM, Marinho CC, Palma-Silva C, Albertoni EF, Figueiredo-Barros MP, Esteves FA (2012) Methane levels in shallow subtropical lake sediments: dependence on the trophic status of the lake and allochthonous input. Limnologica 42:151–155. https://doi.org/10.1016/j.limno.2011.09.009

    Article  CAS  Google Scholar 

  • Hu S, Niu Z, Chen Y, Li L, Zhang H (2017) Global wetlands: potential distribution, wetland loss, and status. Science of the Total Environment 586:319–327

    Article  PubMed  CAS  Google Scholar 

  • Inglett KS, Inglett PW, Reddy KR, Osborne TZ (2012) Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation. Biogeochemistry 108:77–90. https://doi.org/10.1007/s10533-011-9573-3

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate Change 2007: synthesis report. Part of the Working group III contribution to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Junk WJ, Piedade MTF, Lourival R, Wittmann F, Kandus P, Lacerda LD, Bozelli RL, Esteves FA, Nunes da Cunha C, Maltchik L, Schöngart J, Schaeffer-Novelli Y, Agostinho AA (2014) Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquatic Conservation: Marine and Freshwater Ecosystems 24:5–22. https://doi.org/10.1002/aqc.2386

    Article  Google Scholar 

  • Kaushal SS, Mayer PM, Vidon PG, Smith RM, Pennino MJ, Newcomer TA, Duan S, Welty C, Belt KT (2014) Land use and climate variability amplify carbon, nutrient, and contaminant pulses: a review with management implications. Journal of the American Water Resources Association 50(3):585–614

    Article  CAS  Google Scholar 

  • Kayranli B, Scholz M, Mustafa A, Hedmark A (2010) carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands 30:111–124. https://doi.org/10.1007/s13157-009-0003-4

    Article  Google Scholar 

  • Keller JK, Weisenhorn PB, Megonigal JP (2009) Humic acids as electron acceptors in wetland decomposition. Soil Biology and Biochemistry 41:1518–1522

    Article  CAS  Google Scholar 

  • Kim SY, Veraart AJ, Meima-Franke M, Bodelier PLE (2015) Combined effects of carbon, nitrogen and phosphorous on CH4 production and denitrification in wetland sediments. Geoderma 259-260:354–361

    Article  CAS  Google Scholar 

  • Liikanen A, Murtoniemi T, Tanskanen H, Väisänen T, Martikainen PJ (2002) Effects of temperature and oxygen availability on greenhouse gas and nutrient dynamics in sediment of a eutrophic mid-boreal lake. Biogeochemistry 59:269–286

    Article  CAS  Google Scholar 

  • Maltchik L, Rolon AS, Guadagnini DL, Stenert C (2004) Wetlands of Rio Grande do Sul, Brazil: a classification with emphasis on plant communities. Acta Limnologica Brasiliensia 16:137–151

    Google Scholar 

  • Maluf JRT (2000) Nova classificação climática do estado do Rio Grande do Sul, Santa Maria, RS. Revista Brasileira de Agrometeorologia 8:141–150

    Google Scholar 

  • Marinho CC, Palma-Silva C, Albertoni EF, Trindade CR, Esteves FA (2009) Seasonal dynamics of methane in the water column of two subtropical lakes differing in trophic status. Brazilian Journal of Biology 69:631–637

    Article  Google Scholar 

  • Marinho CC, Palma-Silva C, Albertoni EF, Giacomini IB, Figueiredo-Barros MP, Furlanetto LM, Esteves FA (2015) Emergent macrophytes alter the sediment composition in a small, shallow subtropical lake: implications for methane emission. American Journal of Plant Sciences 6:315–322

    Article  CAS  Google Scholar 

  • Marotta H, Pinho L, Gudasz C, Bastviken D, Tranvik LJ, Enrich-Prast A (2014) Greenhouse gas production in low-latitude lake sediments responds strongly to warming. Nature Climate Change 4:467–470. https://doi.org/10.1038/NCLIMATE2222

    Article  CAS  Google Scholar 

  • Meijide A, Gruening C, Goded I, Seufert G, Cescatti A (2017) Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field. Agriculture, Ecosystems and Environment 238:168–178

    Article  CAS  Google Scholar 

  • Mitra S, Wassmann R, Vlek PLG (2005) An appraisal of global wetland area and its organic carbon stock. Current Science 88:1–10

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) The value of wetlands: importance of scale and landscape setting. Ecological Economics 35:25–33

    Article  Google Scholar 

  • Mitsch WJ, Bernal B, Nahlik AM, Mander Ü, Zhang L, Anderson CJ, Jørgensen SE, Brix H (2013) Wetlands, carbon, and climate change. Landscape Ecology 28:583–597. https://doi.org/10.1007/s10980-012-9758-8

    Article  Google Scholar 

  • Natchimuthu S, Selvam BP, Bastviken D (2014) Influence of weather variables on methane and carbon dioxide flux from a shallow pond. Biogeochemistry 119:403–413. https://doi.org/10.1007/s10533-014-9976-z

    Article  CAS  Google Scholar 

  • Palma-Silva C, Marinho CC, Albertoni EF, Giacomini IB, Figueiredo-Barros MP, Furlanetto LM, Trindade CRT, Esteves FA (2013) Methane emissions in two small shallow neotropical lakes: the role of temperature and trophic level. Atmospheric Environment 81:373–379

    Article  CAS  Google Scholar 

  • Petruzzella A, Marinho CC, Sanches LF, Minello M, Esteves FA (2013) Magnitude and variability of methane production and concentration in tropical coastal lagoons sediments. Acta Limnologica Brasiliensia 25(3):341–351

    Article  CAS  Google Scholar 

  • Ramsar Convention Bureau (2001) Wetlands values and functions. Ramsar Convention Bureau, Gland

    Google Scholar 

  • Reboita MS, Krusche N, Piccoli HC (2006) Climate variability in Rio Grande, RS, Brazil: a quantitative analysis of contributions due to atmospheric systems. Revista brasileira de meteorologia 21(2):256–270

    Google Scholar 

  • Rolon AS, Homem HF, Maltchik L (2010) Aquatic macrophytes in natural and managed wetlands of Rio Grande do Sul State, Southern Brazil. Acta Limnologica Brasiliensia 22(2):133–146

    Article  Google Scholar 

  • Santos IR, Niencheski F, Burnett W, Peterson R, Chanton J, Andrade CFF, Milani IB, Schmidt A, Knoeller K (2008) Tracing anthropogenically driven groundwater discharge into a coastal lagoon from Southern Brazil. Journal of Hydrology 353:275–293

    Article  Google Scholar 

  • Schäfer A (1992) Ecological characteristics of the coastal Lakes in Southern Brazil: a synthesis. Acta Limnologica Brasiliensia 4:111–122

    Google Scholar 

  • Schreiner GM, Tagliani CRA, Palma-Silva C (2015) Criteria definition for delimiting a buffer zone to a biosphere reserve in southern Brazil. Neotropical Biology and Conservation 10(1):21–30. https://doi.org/10.4013/nbc.2015.101.04

    Article  Google Scholar 

  • Schulz S, Conrad R (1996) Influence of temperature on pathways to methane production in the permanently cold profundal sediment of Lake Constance. FEMS Microbiology Ecology 20:1–14

    Article  CAS  Google Scholar 

  • Segers R (1998) Methane production and methane consumption – a review of process underlying wetlands methane fluxes. Biogeochemistry 41:23–51

    Article  CAS  Google Scholar 

  • Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science 54:779–791. https://doi.org/10.1046/j.1365-2389.2003.00567.x

    Article  Google Scholar 

  • Stern J, Wang Y, Gu B, Newman J (2007) Distribution and turnover of carbon in natural and constructed wetlands in the Florida Everglades. Applied Geochemistry 22:1936–1948. https://doi.org/10.1016/j.apgeochem.2007.04.007

    Article  CAS  Google Scholar 

  • Sutton-Grier AE, Megonigal JP (2011) Plant species traits regulate methane production in freshwater wetland soils. Soil Biology and Biochemistry 43:413–420. https://doi.org/10.1016/j.soilbio.2010.11.009

    Article  CAS  Google Scholar 

  • Tomazelli LJ, Dillemburg SR, Villwock JA (2000) Late Quartenary geological history of Rio Grande do Sul Coastal Plain, Sothern Brazil. Revista Brasileira de Geociencias 30(3):474–476

    Article  Google Scholar 

  • Villegas-Pangga G, Blair G, Lefroy R (2000) Measurement of decomposition and associated nutrient release from straw (Oryza sativa L.) of different rice varieties using a perfusion system. Plant and Soil 223:1–11

    Article  CAS  Google Scholar 

  • Westlake DF (1963) Comparison of plant productivity. Biological Reviews 38:385–425

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Universidade Federal do Rio Grande-FURG for their financial and logistical support; MSc. Clara Lisandra Lima de Lima, MSc. Claudio Rossano Trindade and Msc. Fernanda Marques for their technical assistance; Dr. Mauricio Camargo (Universidade Federal do Rio Grande – FURG) for statistical contributions; and Dr. Ezequiel Cesar Carvalho Miola (Federal University of Rio Grande - FURG) for suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Marques Furlanetto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furlanetto, L.M., Palma-Silva, C., Perera, M.B. et al. Potential Carbon Gas Production in Southern Brazil Wetland Sediments: Possible Implications of Agricultural Land Use and Warming. Wetlands 38, 485–495 (2018). https://doi.org/10.1007/s13157-018-0993-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-018-0993-x

Keywords

Navigation