Skip to main content
Log in

The distribution of α-kleisin during meiosis in the holocentromeric plant Luzula elegans

  • Original Article
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Holocentric chromosomes occur in a number of independent eukaryotic lineages, and they form holokinetic kinetochores along the entire poleward chromatid surfaces. Due to this alternative chromosome structure, Luzula elegans sister chromatids segregate already in anaphase I followed by the segregation of the homologues in anaphase II. However, not yet known is the localization and dynamics of cohesin and the structure of the synaptonemal complex (SC) during meiosis. We show here that the α-kleisin subunit of cohesin localizes at the centromeres of both mitotic and meiotic metaphase chromosomes and that it, thus, may contribute to assemble the centromere in L. elegans. This localization and the formation of a tripartite SC structure indicate that the prophase I behaviour of L. elegans is similar as in monocentric species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

dNTP:

Deoxynucleoside triphosphates

PCR:

Polymerase chain reaction

DNA:

Deoxyribonucleic acid

SIM:

Structured illumination microscopy

SMC:

Structural maintenance of chromosome

SC:

Synaptonemal complex

RACE:

Rapid amplification of cDNA ends

References

  • Albertson DG, Thomson JN (1993) Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosom Res 1:15–26

    Article  CAS  Google Scholar 

  • Anderson DE, Losada A, Erickson HP et al (2002) Condensin and cohesin display different arm conformations with characteristic hinge angles. J Cell Biol 156:419–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt AM, Lister C, Page T et al (1999) The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family. Plant J 19:463–472

    Article  CAS  PubMed  Google Scholar 

  • Birkenbihl RP, Subramani S (1995) The rad21 gene product of Schizosaccharomyces pombe is a nuclear, cell cycle-regulated phosphoprotein. J Biol Chem 270:7703–7711

    Article  CAS  PubMed  Google Scholar 

  • Cabral G, Marques A, Schubert V et al (2014) Chiasmatic and achiasmatic inverted meiosis of plants with holocentric chromosomes. Nat Commun 5:5070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Dong F, Edelmann RE, Makaroff CA (2003) The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J Cell Sci 116:2999–3007

    Article  CAS  PubMed  Google Scholar 

  • Calvente A, Barbero JL (2012) Cohesins and cohesin-regulators in meiosis. INTECH Open Access Publisher

  • Calvente A, Viera A, Parra MT et al (2013) Dynamics of cohesin subunits in grasshopper meiotic divisions. Chromosoma 122:77–91

    Article  CAS  PubMed  Google Scholar 

  • da Costa-Nunes JA, Bhatt AM, O'Shea S et al (2006) Characterization of the three Arabidopsis thaliana RAD21 cohesins reveals differential responses to ionizing radiation. J Exp Bot 57:971–983

    Article  PubMed  Google Scholar 

  • de Carvalho CE, Zaaijer S, Smolikov S et al (2008) LAB-1 antagonizes the Aurora B kinase in C. elegans. Genes Dev 22:2869–2885

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong F, Cai X, Makaroff C (2001) Cloning and characterization of two Arabidopsis genes that belong to the RAD21/REC8 family of chromosome cohesin proteins. Gene 271:99–108

    Article  CAS  PubMed  Google Scholar 

  • Eijpe M, Offenberg H, Jessberger R et al (2003) Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1β and SMC3. J Cell Biol 160:657–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Cruz R, Brieno MA, Roig I, et al (2010) Dynamics of cohesin proteins REC8, STAG3, SMC1β and SMC3 are consistent with a role in sister chromatid cohesion during meiosis in human oocytes. Human Reproduction: deq180.

  • Gerhard DS, Wagner L, Feingold EA et al (2004) The status, quality, and expansion of the NIH full-length cDNA project. Genome Res 14:2121–2127

    Article  PubMed  Google Scholar 

  • Goldstein P (1987) Multiple synaptonemal complexes (polycomplexes): origin, structure and function. Cell Biol Int Rep 11:759–796

    Article  CAS  PubMed  Google Scholar 

  • Golubovskaya IN, Hamant O, Timofejeva L et al (2006) Alleles of afd1 dissect REC8 functions during meiotic prophase I. J Cell Sci 119:3306–3315

    Article  CAS  PubMed  Google Scholar 

  • Golubovskaya IN, Wang CJ, Timofejeva L, Cande WZ (2011) Maize meiotic mutants with improper or non-homologous synapsis due to problems in pairing or synaptonemal complex formation. J Exp Bot 62:1533–1544

    Article  CAS  PubMed  Google Scholar 

  • Gong C, Li T, Li Q, Yan L, Wang T (2011) Rice OsRAD21-2 is expressed in actively dividing tissues and its ectopic expression in yeast results in aberrant cell division and growth. J Integr Plant Biol 53:14–24

    Article  CAS  PubMed  Google Scholar 

  • Haering CH, Nasmyth K (2003) Building and breaking bridges between sister chromatids. BioEssays 25:1178–1191

    Article  CAS  PubMed  Google Scholar 

  • Hartsuiker E, Vaessen E, Carr A, Kohli J (2001) Fission yeast Rad50 stimulates sister chromatid recombination and links cohesion with repair. EMBO J 20:6660–6671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heckmann S, Schroeder-Reiter E, Kumke K, Ma L, Nagaki K, Murata M, Wanner G, Houben A (2011) Holocentric chromosomes of Luzula elegans are characterized by a longitudinal centromere groove, chromosome bending, and a terminal nucleolus organizer region. Cytogenet Genome Res 134:220–228

    Article  CAS  PubMed  Google Scholar 

  • Heckmann S, Jankowska M, Schubert V, Kumke K, Ma W, Houben A (2014a) Alternative meiotic chromatid segregation in the holocentric plant Luzula elegans. Nat Commun 5:4979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heckmann S, Schubert V, Houben A (2014b) Holocentric plant meiosis: first sisters, then homologues. Cell Cycle 13:3623–3624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson KA, Keeney S (2005) Synaptonemal complex formation: where does it start? BioEssays 27:995–998

    Article  CAS  PubMed  Google Scholar 

  • Herran Y, Gutierrez-Caballero C, Sanchez-Martin M et al (2011) The cohesin subunit RAD21L functions in meiotic synapsis and exhibits sexual dimorphism in fertility. EMBO J 30:3091–3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishiguro K, Kim J, Fujiyama‐Nakamura S, Kato S, Watanabe Y (2011) A new meiosis‐specific cohesin complex implicated in the cohesin code for homologous pairing. EMBO Rep 12:267–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii T, Sunamura N, Matsumoto A et al (2015) Preferential recruitment of the maternal centromere-specific histone H3 (CENH3) in oat (Avena sativa L.) × pearl millet (Pennisetum glaucum L.) hybrid embryos. Chromosom Res 23:709–718

    Article  CAS  Google Scholar 

  • Jiang L, Xia M, Strittmatter LI, Makaroff CA (2007) The Arabidopsis cohesin protein SYN3 localizes to the nucleolus and is essential for gametogenesis. Plant J 50:1020–1034

    Article  CAS  PubMed  Google Scholar 

  • Kaitna S, Pasierbek P, Jantsch M, Loidl J, Glotzer M (2002) The aurora B kinase AIR-2 regulates kinetochores during mitosis and is required for separation of homologous chromosomes during meiosis. Curr Biol 12:798–812

    Article  CAS  PubMed  Google Scholar 

  • Klein F, Mahr P, Galova M, Buonomo SB, Michaelis C, Nairz K, Nasmyth K (1999) A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98:91–103

    Article  CAS  PubMed  Google Scholar 

  • Kudo NR, Wassmann K, Anger M et al (2006) Resolution of chiasmata in oocytes requires separase-mediated proteolysis. Cell 126:135–146

    Article  CAS  PubMed  Google Scholar 

  • Kudo NR, Anger M, Peters AH et al (2009) Role of cleavage by separase of the Rec8 kleisin subunit of cohesin during mammalian meiosis I. J Cell Sci 122:2686–2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Hirano T (2011) RAD21L, a novel cohesin subunit implicated in linking homologous chromosomes in mammalian meiosis. J Cell Biol 192:263–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JY, Orr-Weaver TL (2001) The molecular basis of sister-chromatid cohesion. Annu Rev Cell Dev Biol 17:753–777

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Iwai T, Yokota T et al (2003) Temporally and spatially selective loss of Rec8 protein from meiotic chromosomes during mammalian meiosis. J Cell Sci 116:2781–2790

    Article  CAS  PubMed  Google Scholar 

  • Llano E, Gómez R, Gutiérrez-Caballero C et al (2008) Shugoshin-2 is essential for the completion of meiosis but not for mitotic cell division in mice. Genes Dev 22:2400–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Losada A, Hirano M, Hirano T (2002) Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev 16:3004–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques A, Ribeiro T, Neumann P et al (2015) Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. Proc Natl Acad Sci 112:13633–13638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaelis C, Ciosk R, Nasmyth K (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35–45

    Article  CAS  PubMed  Google Scholar 

  • Mito Y, Sugimoto A, Yamamoto M (2003) Distinct developmental function of two Caenorhabditis elegans homologs of the cohesin subunit Scc1/Rad21. Mol Biol Cell 14:2399–2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moraes IC, Lermontova I, Schubert I (2011) Recognition of A. thaliana centromeres by heterologous CENH3 requires high similarity to the endogenous protein. Plant Mol Biol 75:253–261

    Article  CAS  PubMed  Google Scholar 

  • Nabeshima K, Villeneuve AM, Colaiácovo MP (2005) Crossing over is coupled to late meiotic prophase bivalent differentiation through asymmetric disassembly of the SC. J Cell Biol 168:683–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaki K, Kashihara K, Murata M (2005) Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell 17:1886–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasmyth K (2011) Cohesin: a catenase with separate entry and exit gates? Nat Cell Biol 13:1170–1177

    Article  CAS  PubMed  Google Scholar 

  • Nasmyth K, Haering CH (2005) The structure and function of SMC and kleisin complexes. Annu Rev Biochem 74:595–648

    Article  CAS  PubMed  Google Scholar 

  • Page SL, Hawley RS (2003) Chromosome choreography: the meiotic ballet. Science 301:785–789

    Article  CAS  PubMed  Google Scholar 

  • Pasierbek P, Jantsch M, Melcher M, Schleiffer A, Schweizer D, Loidl J (2001) A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev 15:1349–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao H, Lohmiller LD, Anderson LK (2011) Cohesin proteins load sequentially during prophase I in tomato primary microsporocytes. Chromosom Res 19:193–207

    Article  CAS  Google Scholar 

  • Sakuno T, Tada K, Watanabe Y (2009) Kinetochore geometry defined by cohesion within the centromere. Nature 458:852–858

    Article  CAS  PubMed  Google Scholar 

  • Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci 108:E498–E505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schägger H, Von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  PubMed  Google Scholar 

  • Schubert V (2009) SMC proteins and their multiple functions in higher plants. Cytogenet Genome Res 124:202–214

    Article  CAS  PubMed  Google Scholar 

  • Schubert I, Dolezel J, Houben A, Scherthan H, Wanner G (1993) Refined examination of plant metaphase chromosome structure at different levels made feasible by new isolation methods. Chromosoma 102:96–101

    Article  Google Scholar 

  • Schubert V, Weissleder A, Ali H, Fuchs J, Lermontova I, Meister A, Schubert I (2009) Cohesin gene defects may impair sister chromatid alignment and genome stability in Arabidopsis thaliana. Chromosoma 118:591–605

    Article  CAS  PubMed  Google Scholar 

  • Shao T, Tang D, Wang K et al (2011) OsREC8 is essential for chromatid cohesion and metaphase I monopolar orientation in rice meiosis. Plant Physiol 156:1386–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smolikov S, Schild-Prufert K, Colaiácovo MP (2008) CRA-1 uncovers a double-strand break-dependent pathway promoting the assembly of central region proteins on chromosome axes during C. elegans meiosis. PLoS Genet 4, e1000088

    Article  PubMed  PubMed Central  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  CAS  PubMed  Google Scholar 

  • Sumara I, Vorlaufer E, Stukenberg PT et al (2002) The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol Cell 9:515–525

    Article  CAS  PubMed  Google Scholar 

  • Suzuki G, Nishiuchi C, Tsuru A, Kako E, Li J, Yamamoto M, Mukai Y (2013) Cellular localization of mitotic RAD21 with repetitive amino acid motifs in Allium cepa. Gene 514:75–81

    Article  CAS  PubMed  Google Scholar 

  • Sym M, Engebrecht J, Roeder GS (1993) ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72:365–378

    Article  CAS  PubMed  Google Scholar 

  • Tao J, Zhang L, Chong K, Wang T (2007) OsRAD21-3, an orthologue of yeast RAD21, is required for pollen development in Oryza sativa. Plant J 51:919–930

    Article  CAS  PubMed  Google Scholar 

  • Valdeolmillos AM, Viera A, Page J et al (2007) Sequential loading of cohesin subunits during the first meiotic prophase of grasshoppers. PLoS Genet 3, e28

    Article  PubMed  PubMed Central  Google Scholar 

  • Waizenegger IC, Hauf S, Meinke A et al (2000) Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103:399–410

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Tang D, Wang K, Shen Y, Qin B, Miao C, Li M, Cheng Z (2011) OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis. Plant J 67:583–594

    Article  CAS  PubMed  Google Scholar 

  • Weisshart K, Fuchs J, Schubert V (2016) Structured illumination microscopy (SIM) and photoactivated localization microscopy (PALM) to analyze the abundance and distribution of RNA polymerase II molecules on flow-sorted Arabidopsis nuclei. Bio-protocol 6, e1725

    Google Scholar 

  • Westergaard M, von Wettstein D (1972) The synaptonemal complex. Annu Rev Genet 60:533–554

    Google Scholar 

  • Xu H, Beasley M, Verschoor S et al (2004) A new role for the mitotic RAD21/SCC1 cohesin in meiotic chromosome cohesion and segregation in the mouse. EMBO Rep 5:378–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zetka MC, Kawasaki I, Strome S, Müller F (1999) Synapsis and chiasma formation in Caenorhabditis elegans require HIM-3, a meiotic chromosome core component that functions in chromosome segregation. Genes Dev 13:2258–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LR, Tao JY, Wang T (2004) Molecular characterization of OsRAD21-1, a rice homologue of yeast RAD21 essential for mitotic chromosome cohesion. J Exp Bot 55:1149–1152

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Tao J, Wang S, Chong K, Wang T (2006) The rice OsRad21-4, an orthologue of yeast Rec8 protein, is required for efficient meiosis. Plant Mol Biol 60:533–554

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all members of the Chromosome Structure & Function laboratory (IPK Gatersleben), Ingo Schubert (IPK) and E-Eva Tomaštíková (Centre of the Region Haná for Biotechnological and Agricultural, Research, Institute of Experimental Botany, Olomouc, Czech Republic) for fruitful discussions; to Karla Meier, Katrin Kumke, Oda Weiß, Isolde Tillack and Gresch Ulrike (IPK) for excellent technical assistance; to Anne Fiebig for sequence submission; and to Karin Lipfert (IPK) for help with artwork. This work was supported by the China CSC scholarship, the Deutsche Forschungsgemeinschaft (SPP 1384, HO 1779/17-1) and the IPK Gatersleben.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Houben.

Additional information

Responsible Editor: Jiming Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

CENH3 of L. elegans. (A) Gene structure model of LeCENH3, the positions of start/stop codons, and the in silico identified sequence. The obtained 5’ and 3’ RACE sequences and primer sites are indicated. (B) Alignment of CENH3 sequences from two Luzula species. The conserved domains of CENH3 are indicated by rectangle frames. (C) Phylogenetic analysis of CENH3 proteins from different species. (D) Western blot analysis using anti-LeCENH3, anti-histone H3 and anti-α-tubulin (as control) antibodies. The triangle indicates the band observed corresponding to the LeCENH3 protein. The total protein was extracted from L. elegans flower buds. (PDF 466 kb) (PDF 466 kb)

Supplemental Figure 2

The α-kleisins of L. elegans. (A) Phylogenetic analysis of α-kleisin-like proteins from different plant species. Reference IDs for the phylogenetic analysis of the α-kleisin sequences used in this study are available in Supplemental Table 2. (B) Protein structure model of four Luzula α-kleisin-like proteins based on in silico identification. The similarity of N-terminal conserved regions (red) among each other is indicated. (C) Gene structure model of Leα-kleisin-1 transcripts. Positions of start/stop codon and primer sites are indicated. (D) The purified recombinant Leα-kleisin protein was analyzed by Coomassie staining (blue gel on left) and Western blotting (black picture on right) with anti-6X His tag antibodies. The major band observed corresponds to the Leα-kleisin protein (triangle). (E) The purified recombinant Leα-kleisin protein was analyzed by Leα-kleisin recombinant antibody. The major band observed corresponds to the Leα-kleisin protein (triangle). (PDF 589 kb)

Supplemental Figure 3

The distribution of Leα-kleisin (red) and LeCENH3 (green) at pachytene of L. elegans was identified by SIM. The panels below show the regions of interest (rectangle) further magnified. (PDF 94 kb)

Supplemental Figure 4

The distribution of anti-OsSGO1 (red) along metaphase II chromosomes of L. elegans. (PDF 43 kb)

Supplemental Figure 5

The centromere localization of Leα-kleisin (red) in somatic metaphase chromosomes of V. faba was identified by SIM. (PDF 119 kb)

Supplemental Table 1

List of primer sequences for PCR, RT-PCR and FISH. (DOCX 18 kb)

Supplemental Table 2

List of sequence identifiers and description of α-kleisin sequences used for phylogenetic tree construction. (DOCX 17 kb)

Supplemental Table 3

The similarity of different Leα-kleisin protein sequences. (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Schubert, V., Martis, M.M. et al. The distribution of α-kleisin during meiosis in the holocentromeric plant Luzula elegans . Chromosome Res 24, 393–405 (2016). https://doi.org/10.1007/s10577-016-9529-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-016-9529-5

Keywords

Navigation