Skip to main content
Log in

Inhibition of Autophagy is Involved in the Protective Effects of Ginsenoside Rb1 on Spinal Cord Injury

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is a devastating neurological disorder. Autophagy is induced and plays a crucial role in SCI. Ginsenoside Rb1 (Rb1), one of the major active components extracted from Panax Ginseng CA Meyer, has exhibited neuroprotective effects in various neurodegenerative diseases. However, it remains unknown whether autophagy is involved in the neuroprotection of Rb1 on SCI. In this study, we examined the regulation of autophagy following Rb1 treatment and its involvement in the Rb1-induced neuroprotection in SCI and in vitro injury model. Firstly, we found that Rb1 treatment decreased the loss of motor neurons and promoted function recovery in the SCI model. Furthermore, we found that Rb1 treatment inhibited autophagy in neurons, and suppressed neuronal apoptosis and autophagic cell death in the SCI model. Finally, in the in vitro injury model, Rb1 treatment increased the viability of PC12 cells and suppressed apoptosis by inhibiting excessive autophagy, whereas stimulation of autophagy by rapamycin abolished the anti-apoptosis effect of Rb1. Taken together, these findings suggest that the inhibition of autophagy is involved in the neuroprotective effects of Rb1 on SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL, Davis RJ, Mizushima N, Rakic P, Dardzinski BJ, Holland SK, Sharp FR, Kuan CY (2006) Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol 169(2):566–583. doi:10.2353/ajpath.2006.051066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisicchia E, Latini L, Cavallucci V, Sasso V, Nicolin V, Molinari M, D’Amelio M, Viscomi MT (2016) Autophagy inhibition favors survival of rubrospinal neurons after spinal cord hemisection. Mol Neurobiol. doi:10.1007/s12035-016-0031-z

    PubMed  Google Scholar 

  • Bursch W, Ellinger A, Kienzl H, Torok L, Pandey S, Sikorska M, Walker R, Hermann RS (1996) Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17(8):1595–1607

    Article  CAS  PubMed  Google Scholar 

  • Chen HC, Fong TH, Lee AW, Chiu WT (2012) Autophagy is activated in injured neurons and inhibited by methylprednisolone after experimental spinal cord injury. Spine 37(6):470–475. doi:10.1097/BRS.0b013e318221e859

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Yue R, Yang Y, Zeng H, Chang W, Gao N, Yuan X, Zhang W, Shan L (2015) Protective effects of (E)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeine against hydrogen peroxide-induced injury in PC12 cells. Neurochem Res 40(3):531–541. doi:10.1007/s11064-014-1498-5

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Guo Y, Yang W, Zheng P, Zeng J, Tong W (2016) Involvement of Connexin40 in the protective effects of Ginsenoside Rb1 against traumatic brain injury. Cell Mol Neurobiol 36(7):1057–1065. doi:10.1007/s10571-015-0299-y

    Article  CAS  PubMed  Google Scholar 

  • Cheong CU, Yeh CS, Hsieh YW, Lee YR, Lin MY, Chen CY, Lee CH (2016) Protective effects of costunolide against Hydrogen Peroxide-Induced injury in PC12 cells. Molecules 21(7):898. doi:10.3390/molecules21070898

    Article  Google Scholar 

  • Cho IH (2012) Effects of panax ginseng in neurodegenerative diseases. J Ginseng Res 36(4):342–353. doi:10.5142/jgr.2012.36.4.342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diskin T, Tal-Or P, Erlich S, Mizrachy L, Alexandrovich A, Shohami E, Pinkas-Kramarski R (2005) Closed head injury induces upregulation of Beclin 1 at the cortical site of injury. J Neurotrauma 22(7):750–762. doi:10.1089/neu.2005.22.750

    Article  PubMed  Google Scholar 

  • Erlich S, Shohami E, Pinkas-Kramarski R (2006) Neurodegeneration induces upregulation of Beclin 1. Autophagy 2(1):49–51

    Article  CAS  PubMed  Google Scholar 

  • Goldshmit Y, Kanner S, Zacs M, Frisca F, Pinto AR, Currie PD, Pinkas-Kramarski R (2015) Rapamycin increases neuronal survival, reduces inflammation and astrocyte proliferation after spinal cord injury. Mol Cell Neurosci 68:82–91. doi:10.1016/j.mcn.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Cao G, Yang H, Zhou H, Li L, Cao Z, Yu B, Kou J (2014) A combination of four active compounds alleviates cerebral ischemia-reperfusion injury in correlation with inhibition of autophagy and modulation of AMPK/mTOR and JNK pathways. J Neurosci Res 92(10):1295–1306. doi:10.1002/jnr.23400

    Article  CAS  PubMed  Google Scholar 

  • Huang F, Li YN, Yin F, Wu YT, Zhao DX, Li Y, Zhang YF, Zhu QS (2015) Ginsenoside Rb1 inhibits neuronal apoptosis and damage, enhances spinal aquaporin 4 expression and improves neurological deficits in rats with spinal cord ischemia-reperfusion injury. Mol Med Rep 11(5):3565–3572. doi:10.3892/mmr.2015.3162

    Article  CAS  PubMed  Google Scholar 

  • Isaac L, Pejic L (1995) Secondary mechanisms of spinal cord injury. Surg Neurol 43(5):484–485

    Article  CAS  PubMed  Google Scholar 

  • Jang M, Lee MJ, Choi JH, Kim EJ, Nah SY, Kim HJ, Lee S, Lee SW, Kim YO, Cho IH (2016) Ginsenoside Rb1 attenuates acute inflammatory nociception by inhibition of neuronal ERK phosphorylation by regulation of the Nrf2 and NF-kappaB Pathways. J Pain 17(3):282–297. doi:10.1016/j.jpain.2015.10.007

    Article  CAS  PubMed  Google Scholar 

  • Jensen EC (2013) Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec 296(3):378–381. doi:10.1002/ar.22641

    Article  Google Scholar 

  • Kanno H, Ozawa H, Sekiguchi A, Itoi E (2009a) The role of autophagy in spinal cord injury. Autophagy 5(3):390–392

    Article  CAS  PubMed  Google Scholar 

  • Kanno H, Ozawa H, Sekiguchi A, Itoi E (2009b) Spinal cord injury induces upregulation of Beclin 1 and promotes autophagic cell death. Neurobiol Dis 33(2):143–148. doi:10.1016/j.nbd.2008.09.009

    Article  CAS  PubMed  Google Scholar 

  • Kanno H, Ozawa H, Sekiguchi A, Yamaya S, Itoi E (2011) Induction of autophagy and autophagic cell death in damaged neural tissue after acute spinal cord injury in mice. Spine 36(22):E1427–E1434. doi:10.1097/BRS.0b013e3182028c3a

    Article  PubMed  Google Scholar 

  • Kim SO, You JM, Yun SJ, Son MS, Nam KN, Hong JW, Kim SY, Choi SY, Lee EH (2010) Ginsenoside rb1 and rg3 attenuate glucocorticoid-induced neurotoxicity. Cell Mol Neurobiol 30(6):857–862. doi:10.1007/s10571-010-9513-0

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Kim P, Shin CY (2013) A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res 37(1):8–29. doi:10.5142/jgr.2013.37.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MS, Yang EJ, Kim JI, Ernst E (2009) Ginseng for cognitive function in Alzheimer’s disease: a systematic review. J Alzheimer’s Dis 18(2):339–344. doi:10.3233/JAD-2009-1149

    Article  Google Scholar 

  • Lee MJ, Jang M, Choi J, Chang BS, Kim SH, Kwak YS, Oh S, Lee JH, Chang BJ, Nah SY, Cho IH (2016) Korean red Ginseng and Ginsenoside-Rb1/-Rg1 alleviate experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 Cells and upregulating regulatory T cells. Mol Neurobiol 53(3):1977–2002. doi:10.1007/s12035-015-9131-4

    Article  CAS  PubMed  Google Scholar 

  • Lepine S, Allegood JC, Edmonds Y, Milstien S, Spiegel S (2011) Autophagy induced by deficiency of sphingosine-1-phosphate phosphohydrolase 1 is switched to apoptosis by calpain-mediated autophagy-related gene 5 (Atg5) cleavage. J Biol Chem 286(52):44380–44390. doi:10.1074/jbc.M111.257519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao B, Newmark H, Zhou R (2002) Neuroprotective effects of ginseng total saponin and ginsenosides Rb1 and Rg1 on spinal cord neurons in vitro. Exp Neurol 173(2):224–234. doi:10.1006/exnr.2001.7841

    Article  CAS  PubMed  Google Scholar 

  • Lim JH, Wen TC, Matsuda S, Tanaka J, Maeda N, Peng H, Aburaya J, Ishihara K, Sakanaka M (1997) Protection of ischemic hippocampal neurons by ginsenoside Rb1, a main ingredient of ginseng root. Neurosci Res 28(3):191–200

    Article  CAS  PubMed  Google Scholar 

  • Lin CW, Chen B, Huang KL, Dai YS, Teng HL (2016) Inhibition of autophagy by estradiol promotes locomotor recovery after spinal cord injury in rats. Neurosci Bull 32(2):137–144. doi:10.1007/s12264-016-0017-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo T, Liu G, Ma H, Lu B, Xu H, Wang Y, Wu J, Ge P, Liang J (2014) Inhibition of autophagy via activation of PI3 K/Akt pathway contributes to the protection of ginsenoside Rb1 against neuronal death caused by ischemic insults. Int J Mol Sci 15(9):15426–15442. doi:10.3390/ijms150915426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malagelada C, Ryu EJ, Biswas SC, Jackson-Lewis V, Greene LA (2006) RTP801 is elevated in Parkinson brain substantia nigral neurons and mediates death in cellular models of Parkinson’s disease by a mechanism involving mammalian target of rapamycin inactivation. J Neurosci 26(39):9996–10005. doi:10.1523/JNEUROSCI.3292-06.2006

    Article  CAS  PubMed  Google Scholar 

  • Matsui Y, Kyoi S, Takagi H, Hsu CP, Hariharan N, Ago T, Vatner SF, Sadoshima J (2008) Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion. Autophagy 4(4):409–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park Y, Liu C, Luo T, Dietrich WD, Bramlett H, Hu B (2015) Chaperone-Mediated Autophagy after Traumatic Brain Injury. J Neurotrauma 32(19):1449–1457. doi:10.1089/neu.2014.3694

    Article  PubMed  PubMed Central  Google Scholar 

  • Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6):927–939. doi:10.1016/j.cell.2005.07.002

    Article  CAS  PubMed  Google Scholar 

  • Penas C, Guzman MS, Verdu E, Fores J, Navarro X, Casas C (2007) Spinal cord injury induces endoplasmic reticulum stress with different cell-type dependent response. J Neurochem 102(4):1242–1255. doi:10.1111/j.1471-4159.2007.04671.x

    Article  CAS  PubMed  Google Scholar 

  • Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, Fung C, Debnath J (2010) ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 142(4):590–600. doi:10.1016/j.cell.2010.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivlin AS, Tator CH (1977) Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J Neurosurg 47(4):577–581. doi:10.3171/jns.1977.47.4.0577

    Article  CAS  PubMed  Google Scholar 

  • Rivlin AS, Tator CH (1978) Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg Neurol 10(1):38–43

    CAS  PubMed  Google Scholar 

  • Seo JY, Kim YH, Kim JW, Kim SI, Ha KY (2015) Effects of therapeutic hypothermia on apoptosis and autophagy after spinal cord injury in rats. Spine 40(12):883–890. doi:10.1097/BRS.0000000000000845

    Article  PubMed  Google Scholar 

  • Silva NA, Sousa N, Reis RL, Salgado AJ (2014) From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 114:25–57. doi:10.1016/j.pneurobio.2013.11.002

    Article  PubMed  Google Scholar 

  • Sirbulescu RF, Zupanc GK (2010) Inhibition of caspase-3-mediated apoptosis improves spinal cord repair in a regeneration-competent vertebrate system. Neuroscience 171(2):599–612. doi:10.1016/j.neuroscience.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  • Suzuki C, Isaka Y, Takabatake Y, Tanaka H, Koike M, Shibata M, Uchiyama Y, Takahara S, Imai E (2008) Participation of autophagy in renal ischemia/reperfusion injury. Biochem Biophys Res Commun 368(1):100–106. doi:10.1016/j.bbrc.2008.01.059

    Article  CAS  PubMed  Google Scholar 

  • Tang P, Hou H, Zhang L, Lan X, Mao Z, Liu D, He C, Du H, Zhang L (2014) Autophagy reduces neuronal damage and promotes locomotor recovery via inhibition of apoptosis after spinal cord injury in rats. Mol Neurobiol 49(1):276–287. doi:10.1007/s12035-013-8518-3

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Li M, Wu WK, Tan HM, Geng DF (2008) Ginsenoside Rb1 preconditioning protects against myocardial infarction after regional ischemia and reperfusion by activation of phosphatidylinositol-3-kinase signal transduction. Cardiovasc Drugs Ther 22(6):443–452. doi:10.1007/s10557-008-6129-4

    Article  CAS  PubMed  Google Scholar 

  • Xue JF, Liu ZJ, Hu JF, Chen H, Zhang JT, Chen NH (2006) Ginsenoside Rb1 promotes neurotransmitter release by modulating phosphorylation of synapsins through a cAMP-dependent protein kinase pathway. Brain Res 1106(1):91–98. doi:10.1016/j.brainres.2006.05.106

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Cheng XP, Li JW, Yao Q, Ju G (2009) De-differentiation response of cultured astrocytes to injury induced by scratch or conditioned culture medium of scratch-insulted astrocytes. Cell Mol Neurobiol 29(4):455–473. doi:10.1007/s10571-008-9337-3

    Article  PubMed  Google Scholar 

  • Zhang HY, Wang ZG, Wu FZ, Kong XX, Yang J, Lin BB, Zhu SP, Lin L, Gan CS, Fu XB, Li XK, Xu HZ, Xiao J (2013) Regulation of autophagy and ubiquitinated protein accumulation by bFGF promotes functional recovery and neural protection in a rat model of spinal cord injury. Mol Neurobiol 48(3):452–464. doi:10.1007/s12035-013-8432-8

    Article  PubMed  Google Scholar 

  • Zhou C, Zhong W, Zhou J, Sheng F, Fang Z, Wei Y, Chen Y, Deng X, Xia B, Lin J (2012) Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells. Autophagy 8(8):1215–1226. doi:10.4161/auto.20284

    Article  CAS  PubMed  Google Scholar 

  • Zhou K, Sansur CA, Xu H, Jia X (2017) The temporal pattern, flux, and function of autophagy in spinal cord injury. Int J Mol Sci 18(2):466. doi:10.3390/ijms18020466

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (81571190, 81371350, 31671071), and Foundation of Zhejiang Educational Committee (Y201636785).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihui Huang or Honglin Teng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Human and Animal Rights

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

10571_2017_527_MOESM1_ESM.tif

Supplementary material 1 (TIFF 1542 kb) Supplementary Fig. 1 Rb1 downregulates autophagy in PC12 cells after scratch injury. a Representative phase-contrast microscopic images of scratch-wound PC12 cells at 6, 12, and 24 h. Scale bars are 50 μm. c The wound closure rate of scratch-wound PC12 cells at 6, 12, and 24 h. b Immunofluorescent staining of LC3 (Green), while the nuclei are labeled with DAPI (blue). Scale bars are 10 μm. d Fluorescence intensity of LC3 signal. Data are mean ± SD, n = 3 per group. * P < 0.05 versus control group. “※” represents the scratch injury region

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Lin, C., Wu, S. et al. Inhibition of Autophagy is Involved in the Protective Effects of Ginsenoside Rb1 on Spinal Cord Injury. Cell Mol Neurobiol 38, 679–690 (2018). https://doi.org/10.1007/s10571-017-0527-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-017-0527-8

Keywords

Navigation