Skip to main content
Log in

Involvement of Autophagy in the Protective Effects of Ginsenoside Rb1 in a Rat Model of Traumatic Brain Injury

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

No treatment modalities have been identified to prevent neuron damage induced by traumatic brain injury (TBI). The objective of this study was to investigate whether ginsenoside Rb1 (GS-Rb1) could be utilized to exert neuroprotective effects in TBI.

Methods

Lateral fluid percussion injury (LFPI) was used to induce an experimental TBI model. Lewis rats were divided into a GS-Rb1 group (5, 10, 20 mg/kg, intraperitoneally injected daily), a sham group, and a vehicle group. Neurological impairments were assessed with brain water content, Evans blue extravasation, neurological deficit scores, and Morris water maze test. TUNEL and NeuN staining were utilized to detect neuron apoptosis. The relative expression of apoptosis- and autophagy-relevant molecules were assayed with real-time PCR and western blot.

Results

GS-Rb1 inhibited TBI-induced brain edema and Evans blue extravasation in a dose-dependent manner. Furthermore, GS-Rb1 improved neurological impairments with diminished neurological deficit scores, decreased escape latencies, increased time in the target quadrant, and increased number of platform site crossings. GS-Rb1 protected against neuron apoptosis with downregulated Bax expression and upregulated Bcl-2 expression. It was worth noting that TBI increased the LC3II/LC3I ratio and upregulated the relative expression of Beclin-1, Atg-7, and Atg-3; moreover, TBI downregulated the relative expression of P62. The administration of GS-Rb1 further strengthened the relative expression of autophagy-related molecules.

Conclusions

GS-Rb1 alleviates neurological impairments induced by TBI with upregulated autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao LR. Traumatic brain injury: current treatment strategies and future endeavors. Cell Transplant. 2017;26(7):1118–30.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Capizzi A, Woo J, Verduzco-Gutierrez M. Traumatic brain injury: an overview of epidemiology, pathophysiology, and medical management. Med Clin North Am. 2020;104(2):213–38.

    Article  PubMed  Google Scholar 

  3. Kompanje EJO, van Dijck J, Chalos V, van den Berg SA, Janssen PM, Nederkoorn PJ, van der Jagt M, Citerio G, Stocchetti N, Dippel DWJ, et al. Informed consent procedures for emergency interventional research in patients with traumatic brain injury and ischaemic stroke. Lancet Neurol. 2020;19(12):1033–42.

    Article  PubMed  Google Scholar 

  4. Jiang JY, Gao GY, Feng JF, Mao Q, Chen LG, Yang XF, Liu JF, Wang YH, Qiu BH, Huang XJ. Traumatic brain injury in China. Lancet Neurol. 2019;18(3):286–95.

    Article  PubMed  Google Scholar 

  5. Jinadasa S, Boone MD. Controversies in the management of traumatic brain injury. Anesthesiol Clin. 2016;34(3):557–75.

    Article  PubMed  Google Scholar 

  6. Kitada M, Koya D. Autophagy in metabolic disease and ageing. Nat Rev Endocrinol. 2021;17(11):647–61.

    Article  PubMed  Google Scholar 

  7. Chang C, Jensen LE, Hurley JH. Autophagosome biogenesis comes out of the black box. Nat Cell Biol. 2021;23(5):450–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu CL, Chen S, Dietrich D, Hu BR. Changes in autophagy after traumatic brain injury. J Cereb Blood Flow Metab. 2008;28(4):674–83.

    Article  CAS  PubMed  Google Scholar 

  9. Deretic V. Autophagy in inflammation, infection, and immunometabolism. Immunity. 2021;54(3):437–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mizushima N, Levine B. Autophagy in human diseases. N Engl J Med. 2020;383(16):1564–76.

    Article  CAS  PubMed  Google Scholar 

  11. Zhou P, Xie W, Luo Y, Lu S, Dai Z, Wang R, Zhang X, Li G, Sun G, Sun X. Inhibitory effects of ginsenoside Rb1 on early atherosclerosis in ApoE−/− mice via inhibition of apoptosis and enhancing autophagy. 2018;23(11):2912.

  12. Zhang Z, Li D, Xu L, Li HP. Sirt1 improves functional recovery by regulating autophagy of astrocyte and neuron after brain injury. Brain Res Bull. 2019;150:42–9.

    Article  CAS  PubMed  Google Scholar 

  13. Cui CM, Gao JL, Cui Y, Sun LQ, Wang YC, Wang KJ, Li R, Tian YX, Cui JZ. Chloroquine exerts neuroprotection following traumatic brain injury via suppression of inflammation and neuronal autophagic death. Mol Med Rep. 2015;12(2):2323–8.

    Article  CAS  PubMed  Google Scholar 

  14. Rajput SA, Shaukat A, Rajput IR, Kamboh AA, Iqbal Z, Saeed M, Akhtar RW, Shah SAH, Raza MA, El Askary A, et al. Ginsenoside Rb1 prevents deoxynivalenol-induced immune injury via alleviating oxidative stress and apoptosis in mice. Ecotoxicol Environ Saf. 2021;220: 112333.

    Article  CAS  PubMed  Google Scholar 

  15. Li DW, Zhou FZ, Sun XC, Li SC, Yang JB, Sun HH, Wang AH. Ginsenoside Rb1 protects dopaminergic neurons from inflammatory injury induced by intranigral lipopolysaccharide injection. Neural Regen Res. 2019;14(10):1814–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen X, Huang T, Zhang J, Song J, Chen L, Zhu Y. Involvement of calpain and p25 of CDK5 pathway in ginsenoside Rb1’s attenuation of beta-amyloid peptide25–35-induced tau hyperphosphorylation in cortical neurons. Brain Res. 2008;1200:99–106.

    Article  CAS  PubMed  Google Scholar 

  17. Ardah MT, Paleologou KE, Lv G, Menon SA, Abul Khair SB, Lu JH, Safieh-Garabedian B, Al-Hayani AA, Eliezer D, Li M, et al. Ginsenoside Rb1 inhibits fibrillation and toxicity of alpha-synuclein and disaggregates preformed fibrils. Neurobiol Dis. 2015;74:89–101.

    Article  CAS  PubMed  Google Scholar 

  18. Luo T, Liu G, Ma H, Lu B, Xu H, Wang Y, Wu J, Ge P, Liang J. Inhibition of autophagy via activation of PI3K/Akt pathway contributes to the protection of ginsenoside Rb1 against neuronal death caused by ischemic insults. Int J Mol Sci. 2014;15(9):15426–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen W, Guo Y, Yang W, Zheng P, Zeng J, Tong W. Involvement of Connexin40 in the protective effects of ginsenoside Rb1 against traumatic brain injury. Cell Mol Neurobiol. 2016;36(7):1057–65.

    Article  CAS  PubMed  Google Scholar 

  20. Correll EA, Ramser BJ, Knott MV, McCullumsmith RE, McGuire JL, Ngwenya LB. Deficits in pattern separation and dentate gyrus proliferation after rodent lateral fluid percussion injury. IBRO Neurosci Rep. 2021;10:31–41.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen W, Guo Y, Yang W, Zheng P, Zeng J, Tong W. Protective effect of ginsenoside Rb1 on integrity of blood–brain barrier following cerebral ischemia. Exp Brain Res. 2015;233(10):2823–31.

    Article  CAS  PubMed  Google Scholar 

  22. Hatashita S, Hoff JT, Salamat SM. Ischemic brain edema and the osmotic gradient between blood and brain. J Cereb Blood Flow Metab. 1988;8(4):552–9.

    Article  CAS  PubMed  Google Scholar 

  23. Zeng X-J, Li P, Ning Y-L, Zhao Y, Peng Y, Yang N, Zhao Z-A, Chen J-F, Zhou Y-G. Impaired autophagic flux is associated with the severity of trauma and the role of A2AR in brain cells after traumatic brain injury. Cell Death Dis. 2018;9(2):252.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Radad K, Gille G, Moldzio R, Saito H, Rausch WD. Ginsenosides Rb1 and Rg1 effects on mesencephalic dopaminergic cells stressed with glutamate. Brain Res. 2004;1021(1):41–53.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Liu J, Zhang Z, Bi P, Qi Z, Zhang C. Anti-neuroinflammation effect of ginsenoside Rbl in a rat model of Alzheimer disease. Neurosci Lett. 2011;487(1):70–2.

    Article  CAS  PubMed  Google Scholar 

  26. Zhu J, Jiang Y, Wu L, Lu T, Xu G, Liu X. Suppression of local inflammation contributes to the neuroprotective effect of ginsenoside Rb1 in rats with cerebral ischemia. Neuroscience. 2012;202:342–51.

    Article  CAS  PubMed  Google Scholar 

  27. Gao XQ, Yang CX, Chen GJ, Wang GY, Chen B, Tan SK, Liu J, Yuan QL. Ginsenoside Rb1 regulates the expressions of brain-derived neurotrophic factor and caspase-3 and induces neurogenesis in rats with experimental cerebral ischemia. J Ethnopharmacol. 2010;132(2):393–9.

    Article  CAS  PubMed  Google Scholar 

  28. Kim KA, Jung IH, Park SH, Ahn YT, Huh CS, Kim DH. Comparative analysis of the gut microbiota in people with different levels of ginsenoside Rb1 degradation to compound K. PLoS ONE. 2013;8(4): e62409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dai SN, Hou AJ, Zhao SM, Chen XM, Huang HT, Chen BH, Kong HL. Ginsenoside Rb1 ameliorates autophagy of hypoxia cardiomyocytes from neonatal rats via AMP-activated protein kinase pathway. Chin J Integr Med. 2019;25(7):521–8.

    Article  PubMed  Google Scholar 

  30. Liu X, Chen J, Sun N, Li N, Zhang Z, Zheng T, Li Z. Ginsenoside Rb1 ameliorates autophagy via the AMPK/mTOR pathway in renal tubular epithelial cells in vitro and in vivo. Int J Biol Macromol. 2020;163:996–1009.

    Article  CAS  PubMed  Google Scholar 

  31. Qiao L, Zhang X, Liu M, Liu X, Dong M, Cheng J, Zhang X, Zhai C, Song Y, Lu H, et al. Ginsenoside Rb1 enhances atherosclerotic plaque stability by improving autophagy and lipid metabolism in macrophage foam cells. Front Pharmacol. 2017;8:727.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Duan, Bixia Jiang or Jiugeng Feng.

Ethics declarations

Funding

The study was supported by the Key R & D project of Jiangxi Provincial Department of Science and Technology (20203BBGl73172); the scientific research project of Jiangxi Provincial Department of Education (GJJ200165, GJJ190022); the key youth project of Jiangxi Natural Science Foundation (20202ACBL216005); the National Natural Science Foundation of China (NSFC: 82171366, 81960236).

Conflict of interest

The authors declare that they had no conflicts of interest.

Ethics approval

The study protocol was approved by the Animal Ethics Committee of the First Affiliated Hospital of Nanchang University. All institutional guidelines for the care of the laboratory animals were followed.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Data could be obtained upon reasonable request to the corresponding authors.

Code availability

Not applicable.

Author contributions

S.Z., W.C., H.D., Y.Q., Z.W., J.F., D.R., J.D., and B.J. conducted the experiments, and collected and analyzed the data; S.Z., W.C., J.D., B.J., and J.F. conceived the study; S.Z., W.C., H.D., Y.Q., Z.W., J.F., D.R., J.D., B.J., and J.F. wrote the original manuscript and revised the paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, S., Chen, W., Ding, H. et al. Involvement of Autophagy in the Protective Effects of Ginsenoside Rb1 in a Rat Model of Traumatic Brain Injury. Eur J Drug Metab Pharmacokinet 47, 869–877 (2022). https://doi.org/10.1007/s13318-022-00799-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-022-00799-0

Navigation