Skip to main content
Log in

Beneficial Effect of Astragalosides on Stroke Condition Using PC12 Cells under Oxygen Glucose Deprivation and Reperfusion

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Astragalosides (AST) are reported to be neuroprotective in focal cerebral ischemic models in vivo. In this study, the direct effect of AST against oxygen and glucose deprivation (OGD) including neuronal injury and the underlying mechanisms in vitro were investigated. 5 h OGD followed by 24 h of reperfusion [adding back oxygen and glucose (OGD-R)] was used to induce in vitro ischemia reperfusion injury in differentiated rat pheochromocytoma PC12 cells. AST (1, 100, and 200 µg/mL) were added to the culture after 5 h of the OGD ischemic insult and was present during the reoxygenation phases. A key finding was that OGD-R decreased cell viability, increased lactate dehydrogenase, increased reactive oxygen species, apoptosis, autophagy, functional impairment of mitochondria, and endoplasmic reticulum stress in PC12 cells, all of which AST treatment significantly reduced. In addition, AST attenuated OGD-R-induced cell loss through P38 MAPK activation a neuroprotective effect blunted by SB203580, a specific inhibitor of P38 MAPK. Our data suggest that both apoptosis and autophagy are important characteristics of OGD-R-induced PC12 death and that treating PC12 cells with AST blocked OGD-R-induced apoptosis and autophagy by suppressing intracellular oxidative stress, functional impairment of mitochondria, and endoplasmic reticulum stress. Our data provide identification of AST that can concomitantly inhibit multiple cells death pathways following OGD injuries in neural cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AST:

Astragalosides

ATF6:

Activating transcription factor 6

ATT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

DEVD-PNA:

Ac-ASP-Glu-Val-ASP-P-nitroanilide

ER:

Endoplasmic reticulum

GRP78:

Glucose-regulated protein 78 (or Bip)

GSK-3β:

Glycogen synthase kinase 3 beta

IRE1:

Insositol-requiring kinase 1

JC-1:

5,5′,6,6′-tetrachloro1,1′,3,3′-tetraethylbenzimidazolyl-carbocyanine iodide

LC3B:

Microtubule-associated protein 1 light chain 3

LDH:

Lactate dehydrogenase

LEHD-PNA:

Ac-Leu-Glu-His-ASP-P-nitroanilide

MMP:

Mitochondrial membrane permeabilization

NAC:

N-acetylcysteine

OGD-R:

Oxygen-glucose deprivation followed by reperfusion

PERK:

RNA-activated protein kinase-like ER resident kinase

RIPA:

Radioimmunoprecipitation assay

ROS:

Reactive oxygen species

RPMI:

Roswell Park Memorial Institute

Δφm:

Mitochondrial transmembrane potential

References

  • Allen RG, Tresini M (2008) Oxidative stress and gene regulation. Free Radic Biol Med 28:463–499

    Article  Google Scholar 

  • Badiola N, Penas C, Miñano-Molina A, Barneda-Zahonero B, Fadó R, Sánchez-Opazo G, Comella JX, Sabriá J, Zhu C, Blomgren K, Casas C, Rodríguez-Alvarez J (2011) Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12. Cell Death Dis 2:e149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chan PH (1996) Role of oxidants in ischemic brain damage. Stroke 27:1124–1129

    Article  CAS  PubMed  Google Scholar 

  • Cheng BC, Chang CP, Liu WP, Lin MT (2008) Both mild hypothermia and dopamine D(2) agonist are neuroprotective against hyperthermia-induced injury in PC12 cells. Neurosci Lett 443:140–144

    Article  CAS  PubMed  Google Scholar 

  • Cui D, Wang L, Qi A, Zhou Q, Zhang X, Jiang W (2012) Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats. PLoS One 7:e35324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ding L, Liang XG, Hu Y, Zhu DY, Lou YJ (2008) Involvement of p38MAPK and reactive oxygen species in icariin-induced cardiomyocyte differentiation of murine embryonic stem cells in vitro. Stem Cells Dev 17:751–760

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Dang X, Shi Z, Zhang C, Wang K (2011) Hydroxysafflor yellow A protects PC12 cells against the apoptosis induced by oxygen and glucose deprivation. Cell Mol Neurobiol 31:1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Morselli E, Kepp O, Kroemer G (2009) Targeting post-mitochondrial effectors of apoptosis for neuroprotection. Biochim Biophys Acta 1787:402–413

    Article  CAS  PubMed  Google Scholar 

  • Jin K, Graham SH, Mao X, Nagayama T, Simon RP, Greenberg DA (2001) Fas (CD95) may mediate delayed cell death in hippocampal CA1 sector after global cerebral ischemia. J Cereb Blood Flow Metab 21:1411–1421

  • Kato H, Kogure K (1999) Biochemical and molecular characteristics of the brain with developing cerebral infarction. Cell Mol Neurobiol 19:93–108

    Article  CAS  PubMed  Google Scholar 

  • Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, Kawahara N, Kuida K, Nagata S, Kominami E, Tanaka K, Uchiyama Y (2008) Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 172:454–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  CAS  PubMed  Google Scholar 

  • Li W, Li W, Yin Y, Gong H, Wu G, Zhu F (2009) Protective effects of AST and ASI on memory impairment and its mechanism in senescent rats treated by GC. Zhongguo Zhong Yao Za Zhi 34:199–203

    CAS  PubMed  Google Scholar 

  • Liu DM, Xu DF, Liu ZJ, Yao YY, Li WP (2007) Protective effect of extract of astragalus against injury induced by amyloid peptide in hippocampal neuron. Chin Pharmacol Bull 4:543–547

    Google Scholar 

  • Luo Y, Qin Z, Hong Z, Zhang X, Ding D, Fu JH, Zhang WD, Chen J (2004) Astragaloside IV protects against ischemic brain injury in a murine model of transient focal ischemia. Neurosci Lett 363:218–223

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103

    Article  CAS  PubMed  Google Scholar 

  • Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M, Okami N, Chan PH (2010) Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 1802:92–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qi H, Han Y, Rong J (2012) Potential roles of PI3K/Akt and Nrf2-Keap1 pathways in regulating hormesis of Z-ligustilide in PC12 cells against oxygen and glucose deprivation. Neuropharmacology 62:1659–1670

    Article  CAS  PubMed  Google Scholar 

  • Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112:1809–1820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rao RV, Ellerby HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11:372–380

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Hattori H, Sasaki T, Gotoh J, Hamada J, Fukuuchi Y (2003) Activation of caspase-12 by endoplasmic reticulum stress induced by transient middle cerebral artery occlusion in mice. Neuroscience 118:491–499

    Article  CAS  PubMed  Google Scholar 

  • Shruster A, Ben-Zur T, Melamed E, Offen D (2012) Wnt signaling enhances neurogenesis and improves neurological function after focal ischemic injury. PLoS One 7:e40843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siesjö BK (1982) Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1:155–185

    Article  Google Scholar 

  • Thannickal VJ, Day RM, Klinz SG, Bastien MC, Larios JM, Fanburg BL (2000) Ras-dependent and -independent regulation of reactive oxygen species by mitogenic growth factors and TGF-beta1. FASEB J 14:1741–1748

    Article  CAS  PubMed  Google Scholar 

  • Thornton TM, Pedraza-Alva G, Deng B, Wood CD, Aronshtam A, Clements JL, Sabio G, Davis RJ, Matthews DE, Doble B, Rincon M (2008) Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation. Science 320:667–670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tohda C, Tamura T, Matsuyama S, Komatsu K (2006) Promotion of axonal maturation and prevention of memory los in mice by extracts of astragalus morgholicus. Br J Pharmacol 149:532–541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang L, Zhang L, Chen ZB, Wu JY, Zhang X, Xu Y (2009) Icariin enhances neuronal survival after oxygen and glucose deprivation by increasing SIRT1. Eur J Pharmacol 609:40–44

    Article  CAS  PubMed  Google Scholar 

  • Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K, Qin ZH (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4:762–769

    CAS  PubMed  Google Scholar 

  • Yin YY, Li WP, Gong HL, Zhu FF, Li WZ, Wu GC (2010) Protective effect of astragaloside on focal cerebral ischemia/reperfusion injury in rats. Am J Chin Med 38:517–527

    Article  CAS  PubMed  Google Scholar 

  • Yin YY, Li WP, Wang SB, He T, Hing L (2005) Effect of extract of astragalus on inflammatory factor and apoptosis after focal cerebral ischemia/reperfusion injury in rats. Chin Pharmacol Bull 12:1486–1489

    Google Scholar 

  • Yoshida S, Abe K, Busto R, Watson BD, Kogure K, Ginsberg MD (1982) Influence of transient ischemia on lipid-soluble antioxidants, free fatty acids and energy metabolites in rat brain. Brain Res 245:307–316

    Article  CAS  PubMed  Google Scholar 

  • Zhang QG, Wang R, Khan M, Mahesh V, Brann DW (2008) Role of Dickkopf-1, an antagonist of the Wnt/beta-catenin signaling pathway, in estrogen-induced neuroprotection and attenuation of tau phosphorylation. J Neurosci 28:8430–8441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang D, Guo M, Zhang W, Lu XY (2011) Adiponectin stimulates proliferation of adult hippocampal neural stem/progenitor cells through activation of p38 mitogen-activated protein kinase (p38MAPK)/glycogen synthase kinase 3β (GSK-3β)/β-catenin signaling cascade. J Biol Chem 286:44913–44920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao H (2009) Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. J Cereb Blood Flow Metab 29:873–875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Z, Kim JY, Ma H, Lee JE, Yenari MA (2008) Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab 28:53–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant NSC 101-2314-B-218-001-MY3 from the Taiwan National Council of Science (Taipei) (to C. P. Chang) and the grant MFHR10115 from Chi Mei Medical Center (Tainan, Taiwan) (to B. Y. Chio).

Conflict of interest

The authors declared no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao-Chin Hsu or Mao-Tsun Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, BY., Chang, CP., Lin, JW. et al. Beneficial Effect of Astragalosides on Stroke Condition Using PC12 Cells under Oxygen Glucose Deprivation and Reperfusion. Cell Mol Neurobiol 34, 825–837 (2014). https://doi.org/10.1007/s10571-014-0059-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0059-4

Keywords

Navigation