Skip to main content
Log in

Mitochondrial Dysfunction in Aging Rat Brain Regions upon Chlorpyrifos Toxicity and Cold Stress: An Interactive Study

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mitochondrial dysfunction and consequent energy depletion are the major causes of oxidative stress resulting to bring alterations in the ionic homeostasis causing loss of cellular integrity. Our previous studies have shown the age-associated interactive effects in rat central nervous system (CNS) upon co-exposure to chlorpyrifos (CPF) and cold stress leading to macromolecular oxidative damage. The present study elucidates a possible mechanism by which CPF and cold stress interaction cause(s) mitochondrial dysfunction in an age-related manner. In this study, the activity levels of Krebs cycle enzymes and electron transport chain (ETC) protein complexes were assessed in the isolated fraction of mitochondria. CPF and cold stress (15 and 20 °C) exposure either individually or in combination decreased the activity level of Krebs cycle enzymes and ETC protein complexes in discrete regions of rat CNS. The findings confirm that cold stress produces significant synergistic effect in CPF intoxicated aging rats. The synergism between CPF and cold stress at 15 °C caused a higher depletion of respiratory enzymes in comparison with CPF and cold stress alone and together at 20 °C indicating the extent of deleterious functional alterations in discrete regions of brain and spinal cord (SC) which may result in neurodegeneration and loss in neuronal metabolic control. Hence, co-exposure of CPF and cold stress is more dangerous than exposure of either alone. Among the discrete regions studied, the cerebellum and medulla oblongata appears to be the most susceptible regions when compared to cortex and SC. Furthermore, the study reveals a gradual decrease in sensitivity to CPF toxicity as the rat matures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aldridge JE, Levin ED, Seidler FJ, Slotkin TA (2005) Developmental exposure of rats to chlorpyrifos leads to behavioral alterations in adulthood, involving serotonergic mechanisms and resembling animal models of depression. Environ Health Perspect 113:527–531

    Article  PubMed Central  PubMed  Google Scholar 

  • Ambali S, Akanbi D, Igbokwe N, Shittu M, Kawu M, Ayo J (2007) Evaluation of subchronic chlorpyrifos poisoning on hematological and serum biochemical changes in mice and protective effect of vitamin C. J Toxicol Sci 32:111–120

    Article  CAS  PubMed  Google Scholar 

  • Atterberry TT, Burnett WT, Chambers JE (1997) Age-related differences in parathion and chlorpyrifos toxicity in male rats: Target and non-target esterase sensitivity and cytochrome P450-mediated metabolism. Toxicol Appl Pharmacol 147:411–418

    Article  CAS  PubMed  Google Scholar 

  • Basha PM, Poojary A (2011) Chlorpyrifos induced region specific vulnerability in rat CNS and modulation by age and cold stress: an interactive study. Neurochem Res 36:241–249

    Article  CAS  PubMed  Google Scholar 

  • Basha PM, Poojary A (2012) Oxidative macromolecular alterations in the rat central nervous system in response to experimentally co-induced chlorpyrifos and cold stress: a comparative assessment in aging rats. Neurochem Res 37:335–348

    Article  CAS  PubMed  Google Scholar 

  • Benke GM, Murphy SD (1975) The influence of age on the toxicity and metabolism of methyl parathion and parathion in male and female rats. Toxicol Appl Pharmacol 31:254–269

    Article  CAS  PubMed  Google Scholar 

  • Binukumar BK, Bal A, Kandimalla R, Sunkaria A, Gill KD (2010) Mitochondrial energy metabolism impairment and liver dysfunction following chronic exposure to dichlorvos. Toxicology 270:77–84

    Article  CAS  PubMed  Google Scholar 

  • Bolanos JP, Heales SJR, Peuchen S, Barker JE, Land JM, Clark JB (1996) Nitric oxide-mediated mitochondrial damage: a potential neuroprotective role for glutathione. Free Radic Biol Med 21:995–1001

    Article  CAS  PubMed  Google Scholar 

  • Boon PE, Van der Voet H, Van Raaij MT, Van Klaveren JD (2008) Cumulative risk assessment of the exposure to organophosphorus and carbamate insecticides in the Dutch diet. Food Chem Toxicol 46:3090–3098

    Article  CAS  PubMed  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cardozo-Palaez F, Brooks PJ, Stedeford T, Songs S, Sanchezramos J (2000) DNA damage, repair and antioxidant systems in brain regions: a correlative study. Free Radic Biol Med 28:779–785

    Article  Google Scholar 

  • Du F, Zhu X, Zhang Y, Friedman M, Zhang N, Ugurbil K, Chen W (2008) Tightly coupled brain activity and cerebral ATP metabolic rate. Proc Natl Acad Sci USA 105:6409–6414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple  F-tests. Biometrics 11:1–42

    Google Scholar 

  • Eaton DL, Daroff RB, Autrup H, Bridge J, Buffler P, Costa LG, Coyle J, McKhann G, Mobley WC, Nadel L, Neubert D, Schutte-Herman R, Spencer PS (2008) Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Crit Rev Toxicol S2:1–125

    Article  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid calorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, London, p 333

    Google Scholar 

  • Forsmark-Andree P, Lee CP, Dallner G, Ernster L (1997) Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles. Free Radic Biol Med 22:391–400

    Article  CAS  PubMed  Google Scholar 

  • Frey BN, Valvassori SS, Gomes KM, Martins MR, Dal-Pizzol F, Kapczinski F, Quevedo J (2006) Increased oxidative stress in submitochondrial particles after chronic amphetamine exposure. Brain Res 1097:224–229

    Article  CAS  PubMed  Google Scholar 

  • Gardner PR, Nguyen DH, White CW (1994) Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc Natl Acad Sci USA 91:12248–12252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069

    Article  CAS  PubMed  Google Scholar 

  • Hatefi Y, Rieske JS (1967) Preparation and properties of DPNH–coenzyme Q reductase (complex I of the respiratory chain). Methods Enzymol 10:235–239

    Article  CAS  Google Scholar 

  • Hatefi Y, Stiggall DL (1978) Preparation and properties of succinate: ubiquinone oxidoreductase (complex II). Methods Enzymol 53:21–27

    Article  CAS  PubMed  Google Scholar 

  • Hestrin S (1949) The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine and its analytical application. J Biol Chem 180:249

    CAS  PubMed  Google Scholar 

  • Hong JH, Kim HJ, Kim KJ, Suzuki K, Lee IS (2008) Comparison of metabolic substrates between exercise and cold exposure in skaters. J Physiol Anthropol 27:273–281

    Article  PubMed  Google Scholar 

  • Ishii N, Senoo-Matsuda N, Miyake K, Yasuda K, Ishii T, Hartman PS, Furukawa S (2004) Coenzyme Q10 can prolong C. elegans lifespan by lowering oxidative stress. Mech Ageing Dev 125:41–46

    Article  CAS  PubMed  Google Scholar 

  • Kamboj SS, Kumar V, Kamboj A, Sandhir R (2008) Mitochondrial oxidative stress and dysfunction in rat brain induced by carbofuran exposure. Cell Mol Neurobiol 28(7):961–969

    Article  CAS  PubMed  Google Scholar 

  • Kanarek L, Hill RL (1964) The preparation and characterization of fumarase from swine heart muscle. J Biol Chem 239:4202–4206

    CAS  PubMed  Google Scholar 

  • Karanth S, Pope C (2000) Carboxylesterase and A-esterase activities during maturation and aging: relationship to the toxicity of chlorpyrifos and parathion in rats. Toxicol Sci 58:282–289

    Article  CAS  PubMed  Google Scholar 

  • Keller JN, Mark RJ, Bruce AJ, Blanc E, Rothstein JD, Uchida K, Waeg G, Mattson MP (1997) 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 80:685–696

    Article  CAS  PubMed  Google Scholar 

  • King J (1965) The dehydrogenases or oxidoreductases–lactate dehydrogenase. In: Practical clinical enzymology. Nostrand Company Ltd., London, pp 83–93

  • Lenaz G, Bovina C, D’Aurelio M, Fato R, Formiggini G, Genova ML, Giuliano G, Pich MM, Paolucci U, Castelli GP, Ventura B (2002) Role of mitochondria in oxidative stress and aging. Ann NY Acad Sci 959:199–213

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Liu IY, Bi X, Thompson RF, Doctrow SR, Malfroy B, Baudry M (2003) Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc Natl Acad Sci USA 100:8526–8531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randal R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lukaszewicz-Hussain A (2010) Role of oxidative stress in organophosphate insecticide toxicity—short review. Pestic Biochem Physiol 98:145–150

    Article  CAS  Google Scholar 

  • Mackenbach JP, Kunst AE, Looman CW (1992) Seasonal variation in mortality in The Netherlands. J Epidemiol Community Health 46:261–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maquire CC, Williams BA (1996) Response of thermal stressed bobwhite to organophosphorus exposure. Rev Environ Health 11:101–117

    Google Scholar 

  • Masoud A, Kiran R, Sandhir R (2009) Impaired mitochondrial functions in organophosphate induced delayed neuropathy in rats. Cell Mol Neurobiol 29:1245–1255

    Article  CAS  PubMed  Google Scholar 

  • Mehler AH, Kornberg A, Grisolia S, Ochoa S (1948) The enzymatic mechanism of oxidation-reductions between malate or isocitrate and pyruvate. J Biol Chem 174:961–977

    CAS  PubMed  Google Scholar 

  • Morris D (1967) The effect of sulphydryl and other disulphide reducing agents on cholinetransferase activity estimated with synthetic acetyl CoA. J Neurochem 14:19–27

    Article  CAS  PubMed  Google Scholar 

  • Mortensen SR, Chanda SM, Hooper MJ, Padilla S (1996) Maturational differences in chlorpyrifos-oxonase activity may contribute to age-related sensitivity to chlorpyrifos. J Biochem Toxicol 11:279–287

    Article  CAS  PubMed  Google Scholar 

  • Moser VC, Padilla S (1998) Age- and gender-related differences in the time-course of behavioral and biochemical effects produced by oral chlorpyrifos in rats. Toxicol Appl Pharmacol 149:107–119

    Article  CAS  PubMed  Google Scholar 

  • Moussa CEH, Rusnak M, Hailu A, Sidhu A, Stanley T (2008) Fricke Alterations of striatal glutamate transmission in rotenone-treated mice: MRI/MRS in vivo studies. Exp Neurol 209:224–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naithani S, Saracco SA, Butler CA, Fox TD (2003) Interactions among COX1, COX2, and COX3 mRNA-specific translational activator proteins on the inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiae. Mol Biol Cell 14:324–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Narra MR, Rudra RR, Rajender K (2012) Effects of chlorpyrifos on enzymes as biomarkers of toxicity in Fresh water field crab Barytelphusa guerini. Int J Environ Sci 2(4):2015–2023

    CAS  Google Scholar 

  • Navarro A, Gomez C, Sanchez-Pino MJ, Gonzalez H, Bandez MJ, Boveris AD, Boveris A (2005) Vitamin E at high doses improves survival, neurological performance, and brain mitochondrial function in aging male mice. Am J Physiol Regul Integr Comp Physiol 289:R1392–R1399

    Article  CAS  PubMed  Google Scholar 

  • Obut TA, Saryg SK, Erdynieva TA, Dement’eva TI (2009) Changes in the thyroid activity and influence of dehydroepiandrosterone-sulfate under the cold and not cold influence. Ross Fiziol Zh Im I M Sechenova 95:1234–1241

    CAS  PubMed  Google Scholar 

  • Racker E (1950) Spectrophotometric measurement of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta 4:211–214

    Article  CAS  PubMed  Google Scholar 

  • Rajman M, Juráni M, Lamošová D, Máčajová M, Sedlačková M, Košťá L, Ježová D, Výboh P (2006) The effects of feed restriction on plasma biochemistry in growing meat type chickens (Gallus gallus). Comp Biochem Phys A 145:363–371

    Article  Google Scholar 

  • Rattner BA, Franson JC (1984) Methyl parathion and fenvalerate toxicity in American Kestrels: acute physiological responses and effects of cold. Can J Physiol Pharmacol 62:787–792

    Article  CAS  PubMed  Google Scholar 

  • Rauh VA, Garfinkel R, Perera FP, Andrews HF, Hoepner L, Barr DB, Whitehead R, Tang D, Whyatt RW (2006) Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 118:1845–1859

    Article  Google Scholar 

  • Richter C, Gogvadze V, Laffranchi R, Schlapbach R, Schweizer M, Suter M, Walter P, Yaffee M (1995) Oxidants in mitochondria: from physiology to disease. Biochem Biophys Acta 1271:67–74

    PubMed  Google Scholar 

  • Sahin E, Gumuslu S (2004) Cold-stress-induced modulation of antioxidant defence: role of stressed conditions in tissue injury followed by protein oxidation and lipid peroxidation. Int J Biometeorol 48:165–171

    Article  CAS  PubMed  Google Scholar 

  • Shimomura Y, Nishikimi M, Ozawa T (1984) Isolation and reconstitution of the iron–sulfur protein in ubiquinol–cytochrome c oxidoreductase complex. Phospholipids are essential for the integration of the iron–sulfur protein in the complex. J Biol Chem 25:14059–14063

    Google Scholar 

  • Slotkin TA, Cousins MM, Tate CA, Seidler FJ (2001) Persistent cholinergic presynaptic deficits after neonatal chlorpyrifos exposure. Brain Res 902:229–243

    Article  CAS  PubMed  Google Scholar 

  • Slotkin TA, Levin ED, Seidler FJ (2006) Comparative developmental neurotoxicity of organophosphate insecticides: effects on brain development are separable from systemic toxicity. Environ Health Perspect 114:746–751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith RE, Hoijer DJ (1962) Metabolism and cellular function in cold acclimation. Physiol Rev 42:60

    CAS  PubMed  Google Scholar 

  • Sokol RJ, Dwereaux M, Khandwala RA (1991) Effect of dietary lipid and vitamin E on mitochondrial lipid peroxidation and hepatic injury in the bile duct-ligated rat. J Lipid Res 32:1349–1357

    CAS  PubMed  Google Scholar 

  • Srere PA (1969) Citrate synthase. In: Lowenstein JM (ed) Methods in enzymology, citric acid cycle. Academic Press, New York, pp 3–11

    Chapter  Google Scholar 

  • Tretter L, Adam-Vizi V (2000) Inhibition of Krebs cycle enzymes by hydrogen peroxide: a key role of a-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci 20:8972–8979

    CAS  PubMed  Google Scholar 

  • Tripathi PK, Srivastava VK, Singh A (2003) Toxic effects of dimethoate (organophosphate) on metabolism and enzyme system of freshwater teleost fish Channa punctatus. Asian Fish Sci 16:349–359

    Google Scholar 

  • Vali S, Mythri RB, Jagatha B, Padiadpu J, Ramanujan KS, Andersen JK, Gorin F, Bharath MM (2007) Integrating glutathione metabolism and mitochondrial dysfunction with implications for Parkinson’s disease: a dynamic model. Neuroscience 149:917–930

    Article  CAS  PubMed  Google Scholar 

  • Vrbacky M, Drahota Z, Mracek T, Vojtiskova A, Jesina P, Stopka P, Houstek J (2007) Respiratory chain components involved in the glycerophosphate dehydrogenase-dependent ROS production by brown adipose tissue mitochondria. Biochim Biophys Acta 1767:989–997

    Article  CAS  PubMed  Google Scholar 

  • Wharton DC, Tzagoloff A (1964) Studies on the electron transfer system. LVII. The near infrared absorption band of cytochrome oxidase. J Biol Chem 239:2036–2041

    CAS  PubMed  Google Scholar 

  • Winner BJ (1971) Statistical principles in experimental design, 2nd edn. McGraw-Hill, New York, p 617

    Google Scholar 

Download references

Acknowledgments

This study was supported by University Grant Commission (UGC), South Western Regional Office, PK Block, Palace Road, Bangalore-560009, India under the Faculty Improvement Programme (FIP) provided for second author.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mahaboob Basha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basha, P.M., Poojary, A. Mitochondrial Dysfunction in Aging Rat Brain Regions upon Chlorpyrifos Toxicity and Cold Stress: An Interactive Study. Cell Mol Neurobiol 34, 737–756 (2014). https://doi.org/10.1007/s10571-014-0056-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0056-7

Keywords

Navigation