Skip to main content
Log in

Green engineering of flame-retardant, conductive, and UV protective coating for lyocell blended textiles decorated with graphene and MnO2@Ppy composite

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

A Correction to this article was published on 03 April 2024

This article has been updated

Abstract

A straightforward and green coating is prepared from graphene sheets decorated with MnO2@Polypyrrole for obtaining multifunctional lyocell textiles. A facile ultrasonication approach was developed for the preparation of effectively exfoliated graphene sheets using sodium casein salt (mGRP). A dipping and drying method was used for applying graphene onto the textile. Further, MnO2@Polypyrrole was then prepared on the graphene-modified textile using a new vapor polymerization approach to obtain ternary-coated textiles (LC@mGRP@MOPpy). Different spectroscopic and microscopic analysis techniques were exploited for approving the chemical structure and surface morphology of mGRP, and the various obtained textiles. The thermal, mechanical, electrical resistance, UPF, and flame retardancy behaviors of the fabricated fabrics were evaluated. The electrical resistance of the composite modified textiles was estimated as 10.6 MΩ, which is relatively lower than the pure lyocell fabric (178.9 MΩ). A highly improved ultraviolet protection factor was recorded also for the coated textile (33.74) compared to the pure one (7). Moreover, the flammability tests stated that the rate of burning of coated textile was measured as 0 mm/min compared to the virgin lyocell fabric (125 mm/min). In addition, the afterflame, and glow times were noted as 0 s, and 300 s compared to 17, and 10 s for the uncoated textiles assuring an efficient retardation performance against flame spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  • Abu Elella MH, Goda ES, Yoon KR et al (2021) Novel vapor polymerization for integrating flame retardant textile with multifunctional properties. Compos Commun 24:100614

    Article  Google Scholar 

  • Abu Elella MH, Goda ES, Abdallah HM et al (2023) Green engineering of TMC-CMS nanoparticles decorated graphene sheets for targeting M. tuberculosis. Carbohydr Polym 303:120443

    Article  CAS  PubMed  Google Scholar 

  • Arrieta MP, Peltzer MA, Garrigós MdC et al (2013) Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. J Food Eng 114(4):486–494

    Article  CAS  Google Scholar 

  • Bashari A, Shakeri M, Shirvan AR (2019) UV-protective textiles. In: Shahid I, Butola BS (eds) The impact and prospects of green chemistry for textile technology. Woodhead Publishing

    Google Scholar 

  • Bediako JK, Wei W, Kim S, Yun Y-S (2015) Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber. J Hazard Mater 299:550–561

    Article  CAS  PubMed  Google Scholar 

  • Bora A, Mishra P (2016) Characterization of casein and casein-silver conjugated nanoparticle containing multifunctional (pectin–sodium alginate/casein) bilayer film. J Food Sci Technol 53(10):3704–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Yu N, Zhang L, Liu Z, Wang Z, Chen Z (2015) Synthesis of polypyrrole nanoparticles for constructing full-polymer UV/NIR-shielding film. RSC Adv 5(117):96888–96895

    Article  CAS  Google Scholar 

  • Chen Y, Zhang C, Shenming T, Chai H, Xu D et al (2023) High-performance smart cellulose nanohybrid aerogel fibers as a platform toward multifunctional textiles. Chem Eng J 466:428–437

    Article  Google Scholar 

  • Davies PJ, Horrocks AR, Alderson A (2005) The sensitisation of thermal decomposition of ammonium polyphosphate by selected metal ions and their potential for improved cotton fabric flame retardancy. Polym Degrad Stab 88(1):114–122

    Article  CAS  Google Scholar 

  • Ding Y, Xu W, Wang W, Fong H, Zhu Z (2017) Scalable and facile preparation of highly stretchable electrospun PEDOT:PSS@PU fibrous nonwovens toward wearable conductive textile applications. ACS Appl Mater Interfaces 9(35):30014–30023

    Article  CAS  PubMed  Google Scholar 

  • Dubas ST, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf a: Physicochem Eng 289(1):105–109

    Article  CAS  Google Scholar 

  • Dulal M, Islam M, Maiti S, Islam M, Ali I, Abdelkader A, Novoselov KS, Afroj S, Karim N, Pant HR, Bajgai MP, Nam KT, Seo YA, Pandeya DR, Hong ST, Kim HY (2023) Smart and multifunctional fiber-reinforced composites of 2d heterostructure-based textiles. Adv Funct Mater 33:2305901

    Article  CAS  Google Scholar 

  • Ede SR, Anantharaj S, Nithiyanantham U, Kundu S (2015) DNA-encapsulated chain and wire-like β-MnO2 organosol for oxidative polymerization of pyrrole to polypyrrole. Phys Chem Chem Phys 17(7):5474–5484

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Tao J, Qi L, Jiang X, Shi H, Liu Y et al (2022) Synthesis of a metal oxide affinity chromatography magnetic mesoporous nanomaterial and development of a one-step selective phosphopeptide enrichment strategy for analysis of phosphorylated proteins. Anal Chim Acta 1195:339430

    Article  CAS  PubMed  Google Scholar 

  • Goda ES, Singu BS, Hong SE et al (2020) Good dispersion of poly (δ-gluconolactone)-grafted graphene in poly (vinyl alcohol) for significantly enhanced mechanical strength. Mater Chem Phys 254:123465

    Article  CAS  Google Scholar 

  • Goda ES, Abu Elella MH, Hong SE (2021b) Smart flame retardant coating containing carboxymethyl chitosan nanoparticles decorated graphene for obtaining multifunctional textiles. Cellulose 28(8):5087–5105

    Article  CAS  Google Scholar 

  • Goda ES, Abu Elella MH, Sohail M et al (2021c) N-methylene phosphonic acid chitosan/graphene sheets decorated with silver nanoparticles as green antimicrobial agents. Int J Biol Macromol 182:680–688

    Article  CAS  PubMed  Google Scholar 

  • Goda ES, Abu Elella MH, Gamal H, Hong S, Yoon KR (2021a) Two-dimensional nanomaterials as smart flame retardants for polyurethane. In: Materials and chemistry of flame-retardant polyurethanes. Volume 1. A fundamental approach. American Chemical Society, Washington

  • Guo Y, Xiao M, Ren Y et al (2021) Synthesis of an effective halogen-free flame retardant rich in phosphorus and nitrogen for lyocell fabric. Cellulose 28(11):7355–7372

    Article  CAS  Google Scholar 

  • Han T, Wang M, Wang Y, Tang L (2020) Effects of high-pressure homogenization and ultrasonic treatment on the structure and characteristics of casein. LWT 130:109560

    Article  CAS  Google Scholar 

  • Hanif Z, Shin D, Choi D et al (2020) Development of a vapor phase polymerization method using a wet-on-wet process to coat polypyrrole on never-dried nanocellulose crystals for fabrication of compression strain sensor. Chem Eng J 381:122700

    Article  CAS  Google Scholar 

  • Hasani M, Mahdavian M, Yari H, Ramezanzadeh B (2018) Versatile protection of exterior coatings by the aid of graphene oxide nano-sheets; comparison with conventional UV absorbers. Prog Org Coat 116:90–101

    Article  CAS  Google Scholar 

  • Hu J, Hou J, Huang S, Zong L, Li X, Zhang Z et al (2020) One-pot preparation of zwitterionic graphene nanosheets with exceptional redispersibility and its application in pickering emulsions. Carbon 157:448–456

    Article  CAS  Google Scholar 

  • Kesavapillai SD, Remadevi A, Sruthi CV, Pillai S, Kuzhichalil S (2020) Nickel electrodeposited textiles as wearable radar invisible fabrics. J Ind Eng Chem 88:196–206

    Article  Google Scholar 

  • Korshak YV, Motyakin MV, Plyushchii IV, Kovarskii AL et al (2019) Pyrrole oxidative polymerization by manganese oxide (IV) on silica gel surface. Polymer 180:121717

    Article  Google Scholar 

  • Li J, Cui L, Zhang X (2010) Preparation and electrochemistry of one-dimensional nanostructured MnO2/PPy composite for electrochemical capacitor. Appl Surf Sci 256(13):4339–4343

    Article  CAS  Google Scholar 

  • Li Z, Huang T, Gao W, Xu Z, Chang D et al (2017) Hydrothermally activated graphene fiber fabrics for textile electrodes of supercapacitors. ACS Nano 11(11):11056–11065

    Article  CAS  PubMed  Google Scholar 

  • Maddinedi SB, Mandal BK, Vankayala R, Kalluru P, Tammina SK et al (2014) Casein mediated green synthesis and decoration of reduced graphene oxide. Spectrochim Acta A Mol Biomol Spectrosc 126:227–231

    Article  CAS  PubMed  Google Scholar 

  • Makhlouf G, Abdelkhalik A, Ameen H (2021) Synthesis of a novel highly efficient flame-retardant coating for cotton fabrics with low combustion toxicity and antibacterial properties. Cellulose 28(13):8785–8806

    Article  CAS  Google Scholar 

  • Meng N, Zhang Y, Lin Y, Zhao C, Li Z, Wang X et al (2023) Integrated high barrier and efficient moisture-wicking multilayer textile for medical and health protection. Adv Funct Mater 33:2305411

    Article  CAS  Google Scholar 

  • Mengal N, Sahito IA, Arbab AA et al (2016) Fabrication of a flexible and conductive lyocell fabric decorated with graphene nanosheets as a stable electrode material. Carbohydr Polym 152:19–25

    Article  CAS  PubMed  Google Scholar 

  • Mondal S (2021) Nanomaterials for UV protective textiles. J Ind Text 51:5592S-5621S

    Article  Google Scholar 

  • Nippes RP, Macruz PD, Scaliante MH (2023) Fischer-tropsch synthesis using cobalt catalysts supported on graphene materials: a systematic review. Res Chem Intermed 49:1–28

    Article  Google Scholar 

  • Phuc NT, Giang NTH, An VN, Nam N, Anh LD, Nguyen HC et al (2023) Optimization of the eco-friendly synthesis of graphene oxide from graphite using Plackett–Burman and Box–Behnken models for industrial production orientation. Carbon Lett 33(2):489–500

    Article  Google Scholar 

  • Ramesh S, Yadav HM, Karuppasamy K, Vikraman D, Kim H-S et al (2019) Fabrication of manganese oxide@nitrogen doped graphene oxide/polypyrrole (MnO2@NGO/PPy) hybrid composite electrodes for energy storage devices. J Mater Res Technol 8(5):4227–4238

    Article  CAS  Google Scholar 

  • Ramirez DOS, Varesano A, Carletto RA, Vineis C, Perelshtein I et al (2019) Antibacterial properties of polypyrrole-treated fabrics by ultrasound deposition. Mater Sci Eng C 102:164–170

    Article  Google Scholar 

  • Reisi S, Farimaniraad H, Baghdadi M, Abdoli MA (2023) Immobilization of polypyrrole on waste face masks using a novel in-situ-surface polymerization method: removal of Cr(VI) from electroplating wastewater. Environ Technol. https://doi.org/10.1080/09593330.2023.2210771

  • Shen W, Dong Y, Cui G, Li B (2016) Optimized preparation of electrically conductive cotton fabric by an industrialized exhaustion dyeing with reduced graphene oxide. Cellulose 23(5):3291–3300

    Article  CAS  Google Scholar 

  • Shivakumara S, Munichandraiah N (2019) In-situ preparation of nanostructured α-MnO2/polypyrrole hybrid composite electrode materials for high performance supercapacitor. J Alloys Compd 787:1044–1050

    Article  CAS  Google Scholar 

  • Siddique JA, Attia NF, Geckeler KE (2015) Polymer nanoparticles as a tool for the exfoliation of graphene sheets. Mater Lett 158:186–189

    Article  CAS  Google Scholar 

  • Somu P, Paul S (2018) Casein based biogenic-synthesized zinc oxide nanoparticles simultaneously decontaminate heavy metals, dyes, and pathogenic microbes: a rational strategy for wastewater treatment. J Chem Technol Biotechnol 93(10):2962–2976

    Article  CAS  Google Scholar 

  • Tian M, Hu X, Qu L, Zhu S, Sun Y et al (2016) Versatile and ductile cotton fabric achieved via layer-by-layer self-assembly by consecutive adsorption of graphene doped PEDOT: PSS and chitosan. Carbon 96:1166–1174

    Article  CAS  Google Scholar 

  • Wang J-G, Yang Y, Huang Z-h, Kang F (2014) MnO2/polypyrrole nanotubular composites: reactive template synthesis, characterization and application as superior electrode materials for high-performance supercapacitors. Electrochim Acta 130:642–649

    Article  CAS  Google Scholar 

  • Wang W, Pan Y, Pan H, Yang W, Liew KM, Song L (2016) Synthesis and characterization of MnO2 nanosheets based multilayer coating and applications as a flame retardant for flexible polyurethane foam. Compos Sci Technol 123:212–221

    Article  CAS  Google Scholar 

  • Wang Y, Li X, Wang Y, Liu Y, Bai Y, Liu R, Yuan G (2019) High-performance flexible MnO2@carbonized cotton textile electrodes for enlarged operating potential window symmetrical supercapacitors. Electrochim Acta 299:12–18

    Article  CAS  Google Scholar 

  • Wee B-H, Wu T-F, Hong J-D (2017) Facile and scalable synthesis method for high-quality few-layer graphene through solution-based exfoliation of graphite. ACS Appl Mater Interfaces 9(5):4548–4557

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Zeiger BW, Suslick KS (2013a) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42(7):2555–2567

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Yin B, Guo J, Wang C (2013b) Biocompatible hollow magnetic supraparticles: ultrafast microwave-assisted synthesis, casein-micelle-mediated cavity formation and controlled drug delivery. J Mater Chem B 1(33):4079–4087

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Wang G, Wu Y, Ren X, Gao G (2019) Ultrastretchable wearable strain and pressure sensors based on adhesive, tough, and self-healing hydrogels for human motion monitoring. ACS Appl Mater Interfaces 11(28):25613–25623

    Article  CAS  PubMed  Google Scholar 

  • Yao W, Zhou H, Lu Y (2013) Synthesis and property of novel MnO2@polypyrrole coaxial nanotubes as electrode material for supercapacitors. J Power Sources 241:359–366

    Article  CAS  Google Scholar 

  • Yin Z, Lu H, Gan L, Zhang Y (2023) Electronic fibers/textiles for health-monitoring: fabrication and application. Adv Mater Technol 8:2200654

    Article  CAS  Google Scholar 

  • Yun TG, Hwang B, Kim D, Hyun S, Han SM (2015) Polypyrrole–MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability. ACS Appl Mater Interfaces 7(17):9228–9234

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhong Q (2013) Encapsulation of bixin in sodium caseinate to deliver the colorant in transparent dispersions. Food Hydrocoll 33(1):1–9

    Article  Google Scholar 

  • Zhang Q, Chen J, Li D, Sun L, Ren Y et al (2023) Simultaneous enhancement of mechanical strength and flame retardancy of lyocell fiber via filling fire-resistant cellulose-based derivative. Ind Crops Prod 199:116757

    Article  CAS  Google Scholar 

  • Zhao Y, Wang J, Li Z, Zhang X et al (2020) Washable, durable and flame retardant conductive textiles based on reduced graphene oxide modification. Cellulose 27:1763–1771

    Article  CAS  Google Scholar 

  • Zhou X, Zhang Z, Xu X, Men X, Zhu X (2013) Facile fabrication of superhydrophobic sponge with selective absorption and collection of oil from water. Ind Eng Chem Res 52(27):9411–9416

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Emad S. Goda: Experimental, Analysis, Conceptualization, Data curation, Formal analysis, Writing – original draft, Review & editing, Investigation, Methodology, Resources, Software, Validation, Visualization, Supervision. Heba Gamal: Experimental, Analysis, writing, Funding resources, Supervision. Rehab Taha: Experimental, Analysis, Supervision

Corresponding author

Correspondence to Emad S. Goda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Affiliation information of the authors are updated.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3367 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goda, E.S., Gamal, H. & Taha, R. Green engineering of flame-retardant, conductive, and UV protective coating for lyocell blended textiles decorated with graphene and MnO2@Ppy composite. Cellulose 31, 4533–4545 (2024). https://doi.org/10.1007/s10570-024-05808-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-024-05808-w

Keywords

Navigation