Skip to main content
Log in

Sodium chloride and sodium dodecyl sulfate as additives to enhance dispersibility in microfibrillated cellulose

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

During drying, microfibrillated cellulose (MFC) can aggregate, lowering the tensile strength of MFC films and changing morphology. Therefore, the present study aims to evaluate additives as hydrogen bonding inhibitors on MFC to prevent aggregation. TEMPO-mediated oxidation followed by high-shear mixing was used to produce MFC. Never-dried (ND) MFC, only-dried MFC (DR), MFC with sodium chloride (D-Na) and sodium dodecyl sulfate (D-SD) were freeze-dried and analyzed. DR contained visible aggregates with lower stability in water (less than 85%) and produced the weakest films from all the samples. Even though D-Na had a particle size similar to D-SD, the tensile strength and strain at break of films were considerably lower. D-SD produced the most stable aqueous dispersion with smaller particles and porous structure. The presence of residual SDS increased tensile strength and stiffness of films by 28 and 48%, respectively compared to the ND films. The results show that D-SD was the most suitable additive to use with freeze-drying to preserve MFC physical properties while enhancing mechanical strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data is available upon request.

Abbreviations

MFC:

Microfibrillated cellulose

SDS:

Sodium dodecyl sulfate

ND:

Never-dried MFC

DR:

Freeze-dried MFC without any additive

D-Na:

Freeze-dried MFC with sodium chloride

D-SD:

Freeze-dried MFC with SDS

References

  • Antonini C, Wu T, Zimmermann T, Kherbeche A, Thoraval MJ, Nyström G, Geiger T (2019) Ultra-porous nanocellulose foams: a facile and scalable fabrication approach. Nanomaterials 9:1142–1156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arantes ANC, Silva LE, Wood DF, das Graças AlmeidaTonoli CGHD, de Oliveira JE, da Silva JP, Williams TG, Orts WJ, Bianchi ML (2019) Bio-based thin films of cellulose nanofibrils and magnetite for potential application in green electronics. Carbohydr Polym 207:100–107

    CAS  PubMed  Google Scholar 

  • Ballesteros JEM, Dos Santos V, Mármol G, Frías M, Fiorelli J (2017) Potential of the hornification treatment on eucalyptus and pine fibers for fiber-cement applications. Cellulose 24:2275–2286

    CAS  Google Scholar 

  • Benítez AJ, Walther A (2017) Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space. J of Mater Chem A 31:16003–16024

    Google Scholar 

  • Butchosa N, Zhou Q (2014) Water redispersible cellulose nanofibrils adsorbed with carboxymethyl cellulose. Cellulose 21:4349–4358

    CAS  Google Scholar 

  • Claro PIC, Corrêa AC, de Campos A, Rodrigues VB, Luchesi BR, Silva LE, Mattoso LHC, Marconcini JM (2018) Curaua and eucalyptus nanofibers films by continuous casting: mechanical and thermal properties. Carbohydr Polym 181:1093–1101

    CAS  PubMed  Google Scholar 

  • Cuissinat C, Navard P, Heinze T (2008) Swelling and dissolution of cellulose. Part IV: free floating cotton and wood fibres in ionic liquids. Carbohydr Polym 72:590–596

    CAS  Google Scholar 

  • Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30

    CAS  Google Scholar 

  • Fauziyah M, Widiyastuti W, Balgis R, Setyawan H (2019) Production of cellulose aerogels from coir fibers via an alkali–urea method for sorption applications. Cellulose 26:9583–9598

    CAS  Google Scholar 

  • Fukuzumi H, Tanaka R, Saito T, Isogai A (2014) Dispersion stability and aggregation behavior of TEMPO-oxidized cellulose nanofibrils in water as a function of salt addition. Cellulose 21:1553–1559

    CAS  Google Scholar 

  • Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci 22:545–567

    CAS  Google Scholar 

  • Guimarães Junior M, Botaro VR, Novack KM, Neto WPF, Mendes LM, Tonoli GHD (2015) Preparation of cellulose nanofibrils from bamboo pulp by mechanical defibrillation for their applications in biodegradable composites. J Nanosci Nanotechnol 15:1–18

    Google Scholar 

  • Guimarães Junior M, Teixeira FG, Tonoli GHD (2018) Effect of the nano-fibrillation of bamboo pulp on the thermal, structural, mechanical and physical properties of nanocomposites based on starch/poly (vinyl alcohol) blend. Cellulose 25:1823–1849

    Google Scholar 

  • Han J, Zhou C, Wu Y, Liu F, Wu Q (2013) Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecule 14:1529–1540

    CAS  Google Scholar 

  • Huan S, Yokota S, Bai L, Ago M, Borghei M, Kondo T, Rojas OJ (2017) Formulation and composition effects in phase transitions of emulsions costabilized by cellulose nanofibrils and an ionic surfactant. Biomacromolecule 18:4393–4404

    CAS  Google Scholar 

  • Ioelovich M (2008) Nanostructured cellulose: review. BioResources 3:1403–1418

    Google Scholar 

  • Kassab Z, Boujemaoui A, Youcef HB, Hijlane A, Hannache H, El Achaby M (2019) Production of cellulose nanofibrils from alfa fibers and its nanoreinforcement potential in polymer nanocomposites. Cellulose 26:9567–9581

    CAS  Google Scholar 

  • Liu S, Yu T, Wu Y, Li W, Li B (2014) Evolution of cellulose into flexible conductive green electronics: a smart strategy to fabricate sustainable electrodes for supercapacitors. RSC Adv 4:34134–34143

    CAS  Google Scholar 

  • Lo J, Yen H, Tsai C, Chen B, Hou S (2014) Interaction between hydrophobically modified 2-hydroxyethyl cellulose and sodium dodecyl sulfate studied by viscometry and two-dimensional NOE NMR spectroscopy. J Phys Chem B 118:6922–6930

    CAS  PubMed  Google Scholar 

  • Luong ND, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson L-S, Seppälä J (2013) Processable polyaniline suspensions through in situ polymerization onto nanocellulose. Eur Polym J 49:335–344

    CAS  Google Scholar 

  • Ma G, He M, Yang G, Ji X, Luica LA, Chen J (2021) A feasible approach efficiently redisperse dried cellulose nanofibrils in water: vacuum or freeze drying in the presence of sodium chloride. Cellulose 28:829–842

    CAS  Google Scholar 

  • Medina L, Carosio F, Berglund LA (2019) Recyclable nanocomposite foams of Poly (vinyl alcohol), clay and cellulose nanofibrils—mechanical properties and flame retardancy. Compos Sci Technol 182:107762

    CAS  Google Scholar 

  • Missoum K, Bras J, Belgacem MN (2012) Water redispersible dried nanofibrillated cellulose by adding sodium chloride. Biomacromolecule 13:4118–4125

    CAS  Google Scholar 

  • Osong SH, Norgren S, Engstrand P, Lundberg M, Reza M, Tapani V (2016) Qualitative evaluation of microfibrillated cellulose using the crill method and some aspects of microscopy. Cellulose 23:3611–3624

    Google Scholar 

  • Paajanen A, Ceccherini S, Maloney T, Ketoja JA (2019) Chirality and bound water in the hierarchical cellulose structure. Cellulose 26:5877–5892

    CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecule 8:1934–1941

    Google Scholar 

  • Patruyo LG, Müller AJ, Sáez AE (2002) Shear and extensional rheology of solutions of modified hydroxyethyl celluloses and sodium dodecyl sulfate. Polymer 43:6481–6493

    CAS  Google Scholar 

  • Peng Y, Gardner DJ, Han Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102

    CAS  Google Scholar 

  • Quennouz N, Hashmi SM, Choi HS, Kim JW, Osuji CO (2016) Rheology of cellulose nanofibrils in the presence of surfactants. Soft Matter 12:157–164

    CAS  PubMed  Google Scholar 

  • Rawle AF (2003) Basic of principles of particle-size analysis. Surf Coat Int Part A Coat J 86:58–65

    CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecule 5:1983–1989

    CAS  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, white DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    CAS  PubMed  Google Scholar 

  • Sehaqui H, Mushi NE, Morimune S, Salajkova M, Nishino T, Berglund LA (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interfaces 4:1043–1049

    CAS  PubMed  Google Scholar 

  • Sim G, Alam MN, Godbout L, Vem T (2014) Structure of swollen carboxylated cellulose fibers. Cellulose 21:4595–4606

    CAS  Google Scholar 

  • ASTM Standard D882-12 (2012) Standard test method for tensile properties of thin plastic sheeting. ASTM International, West Conshohoken, PA, USA

    Google Scholar 

  • Suppiah K, Teh PL, Husseinsyah S, Rahman R (2019) Properties and characterization of carboxymethyl cellulose/halloysite nanotube bio-nanocomposite films: effect of sodium dodecyl sulfate. Polym Bull 76:365–386

    CAS  Google Scholar 

  • TAPPI (1994) Fines fraction of paper stock by wet screening (T 261 cm-94)

  • Tardy BL, Yokota S, Ago M, Xiang W, Kondo T, Bordes R, Rojas OJ (2017) Nanocellulose–surfactant interactions. Curr Opin Colloid Interface Sci 29:57–67

    CAS  Google Scholar 

  • Tonoli GHD, Teixeira EM, Correa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibers from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88

    CAS  PubMed  Google Scholar 

  • Tonoli GHD, Holtman KM, Glenn G, Fonseca A, Wood D, Williams T, Sá VA, Torres L, Klamczynski A, Orts WJ (2016) Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing. Cellulose 23:1239–1256

    CAS  Google Scholar 

  • Viana R, Silva A, Pimentel A (2012) Infrared spectroscopy of anionic, cationic, and zwitterionic surfactants. Adv Phys Chem 2012:903272

    Google Scholar 

  • Wang Q, Yao Q, Liu J, Sun J, Zhu Q, Chen H (2019) Processing nanocellulose to bulk materials: a review. Cellulose 26:7585–7617

    CAS  Google Scholar 

  • Xiang X, Filpponen I, Saharinen E, Lappalainen T, Salminen K, Rojas OJ (2018) Foam processing of fibers as a sustainable alternative to wet-laying: fiber web properties and cause−effect relations. ACS Sustain Chem Eng 6:14423–14431

    CAS  Google Scholar 

  • Xiang W, Preisig N, Ketola A, Tardy BL, Bai L, Ketoja JA, Stubenrauch C, Rojas OJ (2019) How cellulose nanofibrils affect bulk, surface, and foam properties of anionic surfactant solutions. Biomacromolecule 20:4361–4369

    CAS  Google Scholar 

  • Yang Q, Saito T, Berglund LA, Isogai A (2015) Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization. Nanoscale 42:17957–17963

    Google Scholar 

  • Zhang X, Shao Z, Zhou Y, Wei J, He W, Wang S, Dai X, Ren J (2019) Redispersibility of cellulose nanoparticles modified by phenyltrimethoxysilane and its application in stabilizing Pickering emulsions. J Mater Sci 54:11713–11725

    CAS  Google Scholar 

  • Zimmermann MVG, Borsoi C, Lavoratti A, Zanini M, Zattera AJ, Santana RMC (2016) Drying techniques applied to cellulose nanofibers. J of Reinf Plast Compos 35:682–697

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Fundação de Amparo à Pesquisa do Estado de Minas Gerais—FAPEMIG, Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, and the Bioproducts Research Unit (BRU—ARS) at the United States Department of Agriculture (Albany—CA).

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

LS, GG, GT conceptualization, methodology, investigation, writing–original draft; RS, LT, WC, TC, AK, AN, TW, DW methodology, investigation, formal analysis, editing and reviewing; WO, GT supervision, writing– editing and reviewing.

Corresponding author

Correspondence to Luiz Eduardo Silva.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.E., Simson, R., Torres, L. et al. Sodium chloride and sodium dodecyl sulfate as additives to enhance dispersibility in microfibrillated cellulose. Cellulose 30, 10923–10934 (2023). https://doi.org/10.1007/s10570-023-05555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-023-05555-4

Keywords

Navigation