Skip to main content

Advertisement

Log in

Base activation of persulfate: an effective pretreatment method to enhance glucose production from lignocellulosic biomass

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Pretreatment is a necessary process in biorefineries to overcome recalcitrance of biomass and enhance its conversion efficiency for further transformation. NaOH activation of Na2S2O8, which merges alkaline pretreatment and advanced oxidation processes (AOPs) into one process, was performed at room temperature (25 °C) within a short duration (60 min). High concentration of NaOH plays a critically important role in NaOH–Na2S2O8 pretreatment, which not only selectively removed hemicellulose in the lignocellulosic feedstock, but also activated Na2S2O8 to produce strong oxidative radicals, leading to disruption of lignin matrix. The surface area and porosity for the pretreated feedstock were significantly increased compared with those of the pristine counterpart. After pretreatment by 5.12 M NaOH and 0.85 M Na2S2O8, the maximum glucose yield of the feedstock was increased by 47.4% compared with that of pristine counterpart (60.3% vs. 40.9%). This study provides an effective and easily-realizable pretreatment method for the utilization of lignocellulosic biomass.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ali N, Giwa AS, Abdalla M, Liu X (2020) Alkaline hydrogen peroxide pretreatment of bamboo culm for improved enzymatic release of reducing sugars using recombinant cellulases. Cellulose 27:769–779

    Article  CAS  Google Scholar 

  • Chen W, Ye S, Sheen H (2012) Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Appl Energy 93:237–244

    Article  CAS  Google Scholar 

  • Davaritouchaee M, Hiscox WC, Martinez-Fernandez J, Fu X, Mancini RJ, Chen SL (2019) Effect of reactive oxygen species on biomass structure in different oxidative processes. Ind Crops Prod 137:484–494

    Article  CAS  Google Scholar 

  • Den W, Sharma VK, Lee M, Nadadur G, Varma RS (2018) Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to energy and value-added chemicals. Front Chem 6:141

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng Y, Li G, Li X, Zhu N, Xiao B, Li J, Wang Y (2016) Enhancement of biomass conversion in catalytic fast pyrolysis by microwave-assisted formic acid pretreatment. Bioresour Technol 214:520–527

    Article  CAS  PubMed  Google Scholar 

  • Furman OS, Teel AL, Watts RJ (2010) Mechanism of base activation of persulfate. Environ Sci Technol 44:6423–6428

    Article  CAS  PubMed  Google Scholar 

  • Ho MC, Ong VZ, Wu TY (2019) Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization—a review. Renew Sustain Energy Rev 112:75–86

    Article  CAS  Google Scholar 

  • Jin S, Zhang G, Zhang P, Li F, Wang S, Fan S, Zhou S (2016) Microwave assisted alkaline pretreatment to enhance enzymatic saccharification of catalpa. Sawdust Bioresour Technol 221:26–30

    Article  CAS  PubMed  Google Scholar 

  • Jung Y, Kim H, Park H, Park Y, Park K, Seo J, Kim K (2015) Mimicking the Fenton reaction-induced wood decay by fungi for pretreatment of lignocellulose. Bioresour Technol 179:467–472

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48

    Article  CAS  PubMed  Google Scholar 

  • Kuang Y et al (2020) Cellulose II nanocrystal: a promising bio-template for porous or hollow nano SiO2 fabrication. Cellulose 27:3167–3479

    Article  CAS  Google Scholar 

  • Kucherov FA, Romashov LV, Galkin KI, Ananikov VP (2018) Chemical transformations of biomass-derived C6-furanic platform chemicals for sustainable energy research, materials science, and synthetic building blocks. ACS Sustain Chem Eng 6:8064–8092

    Article  CAS  Google Scholar 

  • Kuga S, Wu M (2019) Mechanochemistry of cellulose. Cellulose 26:215–225

    Article  CAS  Google Scholar 

  • Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sustain Energy Rev 90:877–891

    Article  CAS  Google Scholar 

  • Li W, Liu Q, Ma Q, Zhang T, Ma L, Jameel H, Chang H (2016) A two-stage pretreatment process using dilute hydrochloric acid followed by Fenton oxidation to improve sugar recovery from corn stover. Bioresour Technol 219:753–756

    Article  CAS  Google Scholar 

  • Li J, Liu X, Zheng Q, Chen L, Huang L, Ni Y, Ouyang X (2019) Urea/NaOH system for enhancing the removal of hemicellulose from cellulosic fibers. Cellulose 26:6393–6400

    Article  CAS  Google Scholar 

  • Loow Y et al (2015) Recent advances in the application of inorganic salt pretreatment for transforming lignocellulosic biomass into reducing sugars. J Agric Food Chem 63:8349–8363

    Article  CAS  PubMed  Google Scholar 

  • Lorenci Woiciechowski A et al (2020) Lignocellulosic biomass: acid and alkaline pretreatments and their effects on biomass recalcitrance-conventional processing and recent advances. Bioresour Technol 304:122848

    Article  CAS  PubMed  Google Scholar 

  • Maity SK (2015) Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renew Sustain Energy Rev 43:1427–1445

    Article  CAS  Google Scholar 

  • Mariscal R, Mairelestorres P, Ojeda M, Sadaba I, Granados ML (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9:1144–1189

    Article  CAS  Google Scholar 

  • Mittal A, Katahira R, Donohoe BS, Black BA, Pattathil S, Stringer JM, Beckham GT (2017) Alkaline peroxide delignification of corn stover. ACS Sustain Chem Eng 5:6310–6321

    Article  CAS  Google Scholar 

  • Moura HOMA, Campos LMA, da Silva VL, de Andrade JCF, de Assumpção SMN, Pontes LAM, de Carvalho LS (2018) Investigating acid/peroxide-alkali pretreatment of sugarcane bagasse to isolate high accessibility cellulose applied in acetylation reactions. Cellulose 25:5669–5685

    Article  CAS  Google Scholar 

  • Nitsos CK, Lazaridis PA, Mach-Aigner A, Matis KA, Triantafyllidis KS (2019) Enhancing lignocellulosic biomass hydrolysis by hydrothermal pretreatment, extraction of surface lignin, wet milling and production of cellulolytic enzymes. ChemSusChem 12:1179–1195

    Article  CAS  PubMed  Google Scholar 

  • Ouyang S, Qiao H, Xu Q, Zheng Z, Ouyang J (2019) Development of two-step pretreatment of Chinese fir sawdust using dilute sulfuric acid followed by sodium chlorite for bioethanol production. Cellulose 26:8513–8524

    Article  CAS  Google Scholar 

  • Rebello S, Anoopkumar AN, Aneesh EM, Sindhu R, Binod P, Pandey A (2020) Sustainability and life cycle assessments of lignocellulosic and algal pretreatments. Bioresour Technol 301:122678

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez Alonso E, Dupont C, Heux L, Da Silva Perez D, Commandre J-M, Gourdon C (2016) Study of solid chemical evolution in torrefaction of different biomasses through solid-state 13 C cross-polarization/magic angle spinning NMR (nuclear magnetic resonance) and TGA (thermogravimetric analysis). Energy 97:381–390

    Article  CAS  Google Scholar 

  • Sahoo D, Ummalyma SB, Kumar OA, Pandey A, Sankar M, Sukumaran RK (2018) Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis. Bioresour Technol 253:252–255

    Article  CAS  PubMed  Google Scholar 

  • Sheldon RA (2018) The road to biorenewables: carbohydrates to commodity chemicals. ACS Sustain Chem Eng 6:4464–4480

    Article  CAS  Google Scholar 

  • Shen F, Sun S, Zhang X, Yang J, Qiu M, Qi X (2020) Mechanochemical-assisted production of 5-hydroxymethylfurfural from high concentration of cellulose. Cellulose 27:3013–3023

    Article  CAS  Google Scholar 

  • Shen F, Xiong X, Fu J, Yang J, Qiu M, Qi X, Tsang DCW (2020b) Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources. Renew Sustain Energy Rev 130:109944

    Article  CAS  Google Scholar 

  • Song B, Buendia-Kandia F, Yu Y, Dufour A, Wu H (2019) Importance of lignin removal in enhancing biomass hydrolysis in hot-compressed water. Bioresour Technol 288:121522

    Article  PubMed  Google Scholar 

  • Sun RC, Fang JM, Tomkinson J (2000) Delignification of rye straw using hydrogen peroxide Industrial. Crops Prod 12:71–83

    Article  CAS  Google Scholar 

  • Tang P, Abdul PM, Engliman NS, Hassan O (2018) Effects of pretreatment and enzyme cocktail composition on the sugars production from oil palm empty fruit bunch fiber (OPEFBF). Cellulose 25:4677–4694

    Article  CAS  Google Scholar 

  • Tyufekchiev M, Kolodziejczak A, Duan P, Foston M, Schmidt-Rohr K, Timko MT (2019) Reaction engineering implications of cellulose crystallinity and water-promoted recrystallization. Green Chem 21:5541–5555

    Article  CAS  Google Scholar 

  • Walter D, SV K, Mengshan L, Govind N, S. VR (2018) Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to energy and value-added chemicals. Front Chem 6:1–23

    Google Scholar 

  • Wang J, Xi J, Wang Y (2015) Recent advances in the catalytic production of glucose from lignocellulosic biomass. Green Chem 17:737–751

    Article  CAS  Google Scholar 

  • Wang W et al (2016) High conversion of sugarcane bagasse into monosaccharides based on sodium hydroxide pretreatment at low water consumption and wastewater generation. Bioresour Technol 218:1230–1236

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86

    Article  Google Scholar 

  • Wang J, Wang S (2018) Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem Eng J 334:1502–1517

    Article  CAS  Google Scholar 

  • Wen J, Yin Y, Peng X, Zhang S (2019) Using H2O2 to selectively oxidize recyclable cellulose yarn with high carboxyl content. Cellulose 26:2699–2713

    Article  CAS  Google Scholar 

  • Yang X et al (2019) Overcoming biomass recalcitrance to enhance platform chemical production from soft wood by organosolvolysis coupled with fast pyrolysis. Cellulose 26:9687–9708

    Article  CAS  Google Scholar 

  • Zhang Z, Dong C, Ding X, Xia Y (2015) A generalized ZnCl2 activation method to produce nitrogen-containing nanoporous carbon materials for supercapacitor applications. J Alloy Compd 636:275–281

    Article  CAS  Google Scholar 

  • Zhang X, Wilson K, Lee AF (2016) Heterogeneously catalyzed hydrothermal processing of C5–C6 sugars. Chem Rev 116:12328–12368

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Dong H, Zhao L, Wang D, Meng D (2019) A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci Total Environ 670:110–121

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Shakeel U, Saif Ur Rehman M, Li H, Xu X, Xu J (2020) Lignin-carbohydrate complexes (LCCs) and its role in biorefinery. J Clean Prod 253:120076

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Fund for Distinguished Young Scholars of Tianjin (No. 17JCJQJC45500), the National Natural Science Foundation of China (NSFC Nos. 21876091 and 21577073), Tianjin Municipal Science and Technology Project (18PTZWHZ00150) and the Natural Science Foundation of Tianjin (No. 19JCQNJC13800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2634 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, X., Shen, F. et al. Base activation of persulfate: an effective pretreatment method to enhance glucose production from lignocellulosic biomass. Cellulose 28, 4039–4051 (2021). https://doi.org/10.1007/s10570-021-03796-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-03796-9

Keywords

Navigation