Skip to main content
Log in

Electrokinetic and sorption properties of hydrogen peroxide treated flax fibers (Linum usitatissimum L.)

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Hydrogen peroxide represents an ecologically and economically acceptable agent for bleaching of flax fibers. The influence of hydrogen peroxide treatment under different conditions, i.e. hydrogen peroxide concentrations (1%, 2% and 4% w/v) and treatment temperature (50 °C, 80 °C and boiling temperature), on the chemical composition, electrokinetic and sorption properties and whiteness index of flax fibers, has been studied. The surface properties and water uptake behavior, i.e. swelling of untreated and treated flax fibers, were monitored through zeta potential measurements using the streaming potential method.The present research has found out that hydrogen peroxide simultaneously removes hemicelluloses and lignin from flax fibers. The ratio between the removal of hemicelluloses (hydrophilic component) and lignin (hydrophobic component), as well as changes in crystallinity, pore structure and carbonyl and carboxyl groups content, have a dominant effect on the electrokinetic, i.e. zeta potential versus pH and isoelectric point and sorption properties of the treated flax fiber. An increase of approximately three-to-four-fold in the whiteness index of the treated flax fibers has been observed. The established correlations between the modification conditions and properties of flax fibers, allow the utilization of hydrogen peroxide for bleaching and simultaneous fiber modification with the possibility of tailoringflax fibers properties.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AATCC TM 110–2005: Whiteness of textiles (2005)

  • Abdel-Halima ES (2012) Physiochemical properties of differently pretreated cellulosic fibers. Carbohydr Polym 88:1201–1207

    Google Scholar 

  • ASTM D 2654–76 (1676) Moisture content and moisture regain of textiles, in annual book of ASTM Standards, American society for testing and materials, Philadelphia

  • ASTM D 2402–78 (1974) Standard test method for water retention of fibers (centrifuge method), in annual book of ASTM Standards, American society for testing and materials, Philadelphia

  • ASTM D 1776–74 (1976) Conditioning textiles and textile products for testing, in annual book of ASTM Standards, American society for testing and materials, Philadelphia

  • Baley C, Gomina M, Breard J, Bourmaud A, Drapier S, Ferreira M, Le Duigou A, Liotier PJ, Ouagne P, Soulat D, Davies P (2019) Specific features of flax fibres used to manufacture composite materials. Int J Mater Form 12(6):1023–1052

    Google Scholar 

  • Baltazar-y-Jimenez A, Bismarck A (2007) Wetting behaviour, moisture up-take and electrokinetic properties of lignocellulosic fibres. Cellulose 14:115–127

    CAS  Google Scholar 

  • Barczewski M, Matykiewicz D, Szostak M (2020) The effect of two-step surface treatment by hydrogen peroxide and silanization of flax/cotton fabrics on epoxy-based laminates thermomechanical properties and structure. J Mater Res Technol 9:13813–13824

    CAS  Google Scholar 

  • Barneto AG, Vila C, Ariza J, Vidal T (2010) Thermogravimetric measurement of amorphous cellulose content in flax fibre and flax pulp. Cellulose 18:17–31

    Google Scholar 

  • Bellmann C, Caspari A, Albrecht V, Loan Doan TT, Mäder E, Luxbacher T, Kohl R (2005) Electrokinetic properties of natural fibres. Colloid Surface A 267:19–23

    CAS  Google Scholar 

  • Bhattacharya SD, Shah JN (2004) Enzymatic treatments of flax fabric. Text Res J 74:622–628

    CAS  Google Scholar 

  • Carmichael DL, Althouse EB (1986) Short sequences bleaching with hydrogen peroxide. Tappi J 69(11):90–94

    CAS  Google Scholar 

  • Chiliveri SR, Koti S, Linga VR (2016) Retting and degumming of natural fibers by pectinolytic enzymes produced from Bacillus tequilensis SV11-UV37 using solid state fermentation. SpringerPlus 5:559

    PubMed  PubMed Central  Google Scholar 

  • Dalbaşı ES, Özçelik KG (2019) A research on the comfort properties of linen fabrics subjected to various finishing treatments. J Nat Fibers Article Press. https://doi.org/10.1080/15440478.2019.1675210

    Article  Google Scholar 

  • Dehabadi L, Karoyo AH, Soleimani M, Alabi WO, Simonson CJ, Wilson LD (2020) Flax biomass conversion via controlled oxidation: facile tuning of physicochemical properties. Bioengineering 7(2):1–18

    Google Scholar 

  • Duchemin B, Thuault A, Vicente A, Rigaud B, Fernandez C, Eve S (2012) Ultrastructure of cellulose crystallites in flax textile fibres. Cellulose 19:1837–1854

    CAS  Google Scholar 

  • Fakin D, Golob V, Kleinschek KS, Marechal AML (2006) Sorption properties of flax fibers depending on pretreatment processes and their environmental impact. Text Res J 76:448–454

    CAS  Google Scholar 

  • Fang JM, Sun RC, Tomkinson J (2000) Isolation and characterization of hemicellulosesand cellulose from rye straw by alkaline peroxide extraction. Cellulose 7:87–107

    CAS  Google Scholar 

  • Farooq A, Ali S, Abbas N, Fatima GA, Ashraf MA (2013) Comparative performance evaluation of conventional bleaching and enzymatic bleaching with glucose oxidase on knitted cotton fabric. J Clean Prod 42:167–171

    CAS  Google Scholar 

  • Goudenhooft C, Bourmaud A, Baley C (2019) Flax (Linumusitatissimum L) fibers for composite reinforcement: exploring the link between plant growth cell walls, development and fiber properties. Front Plant Sci 10:411

    PubMed  PubMed Central  Google Scholar 

  • Guo A, Sun Z, Satyavolu J (2019) Impact of chemical treatment on the physiochemical and mechanical properties of kenaf fibers. Ind Crops Prod 141:111726

    CAS  Google Scholar 

  • Hubbe MA (2006) Sensing the electrokinetic potential of cellulosic fiber surfaces. BioResources 1:116–149

    Google Scholar 

  • Kessler RW, Becker U, Kohler R, Goth B (1998) Steam explosion of flax-a superior technique for upgrading fibre value. Biomass Bioenerg 14(3):237–249

    CAS  Google Scholar 

  • Koblyakov A (1989) Laboratory practice in the study of textile materials. Mir Publishers, Moscow, pp 192–200

    Google Scholar 

  • Kostic MM, Pejic BM, Asanovic KA, Aleksic VM, Skundric PD (2010) Effect of hemicelluloses and lignin on the sorption and electric properties of hemp fibers. Ind Crops Prod 32:169–174

    CAS  Google Scholar 

  • Kreze T, Strnad S, Stana-Kleinschek K, Ribitsch V (2001) Influence of aqueous medium on mechanical properties of conventional and new environmentally friendly regenerated cellulose fibers. Mater Res Innov 4:107–114

    CAS  Google Scholar 

  • Lazic BD, Janjic SD, Rijavec T, Kostic MM (2017) Effect of chemical treatments on the chemical composition and properties of flax fibers. J Serb Chem Soc 82:83–97

    CAS  Google Scholar 

  • Lazic B, Pejic B, Kramar A, Vukcevic M, Mihajlovski K, Rusmirovic J, Kostic M (2018) Influence of hemicelluloses and lignin content on structure and sorption properties of flax fibers (Linum usitatissimum L.). Cellulose 25:697–709

    CAS  Google Scholar 

  • Liu K, Zhang X, Yan K (2018) Bleaching of cotton fabric with tetraacetylhydrazine as bleach activator for H2O2. Carbohydr Polym 188:221–227

    CAS  PubMed  Google Scholar 

  • López Durán V, Larsson PA, Wågberg A (2018) Chemical modification of cellulose-rich fibres to clarify the influence of the chemical structure on the physical and mechanical properties of cellulose fibres and thereof made sheets. Carbohydr Polym 182:1–7

    PubMed  Google Scholar 

  • Luxbacher T (2014) The zeta guide principles of the streaming potential technique. Anton Paar, Graz Austria

    Google Scholar 

  • Milanovic J, Kostic M, Milanovic P, Skundric P (2012) Influence of TEMPO-mediated oxidation on properties of hemp fibers. Ind Eng Chem Res 51:9750–9759. https://doi.org/10.1021/ie300713x

    Article  CAS  Google Scholar 

  • Mistik SI, Yukseloglu SM (2005) Hydrogen peroxide bleaching of cotton in ultrasonic energy. Ultrasonics 43:811–814

    CAS  PubMed  Google Scholar 

  • Mukherjee A, Ganguly PK, Sur D (1993) Structural mechanics of jute: the effects of hemicellulose or lignin removal. J Text I 84:348–353

    CAS  Google Scholar 

  • Nelson ML, Rousselle M-A, Cangemi SJ, Trouard P (1970) Theiodine sorption test. Factors affecting reproducibility and a semimicro adaptation. Text Res J 40:865–872

    Google Scholar 

  • Pejić BM, Kostić MM, Skundrić PD, Praskalo JZ (2008) The effects of hemicelluloses and lignin removal on water uptake behavior of hemp fibers. Bioresour Technol 99:7152–7159

    PubMed  Google Scholar 

  • Potthast A, Rosenau T, Kosma P (2006) Analysis of oxidized functionalities in cellulose. Adv Polym Sci 205:1–48

    CAS  Google Scholar 

  • Praskalo J, Kostic M, Potthast A, Popov G, Pejic B, Skundric P (2009) Sorption properties of TEMPO-oxidized natural and man-made cellulose fibers. Carbohyd Polym 77:791–798

    CAS  Google Scholar 

  • Qu L, Zhu S, Liu M, Wang S (2005) The mechanism and technology parameters optimization of alkali-H2O2 one-bath cooking and bleaching of hemp. J Appl Polym Sci 97:2279–2285

    CAS  Google Scholar 

  • Ramesh M (2019) Flax (Linum usitatissimum L.) fibre reinforced polymer composite materials: A review on preparation, properties and prospects. Prog Mater Sci 102:109–166

    CAS  Google Scholar 

  • Röhrling J, Potthast A, Rosenau T, Lange T, Borgards A, Sixta H, Kosma P (2002) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 2. Validation and applications, Biomacromolecules 3:969–975

    Google Scholar 

  • Saini S, Gupta A, Singh N, Sheikh J (2020) Functionalization of linen fabric using layer by layer treatment with chitosan and green tea extract. J Ind Eng Chem 82:138–143

    CAS  Google Scholar 

  • Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation and upgrading. Chem Soc Rev 47(3):852–908

    CAS  PubMed  Google Scholar 

  • Seo PN, Han SY, Park CW, Lee SY, Kim NH, Lee SH (2019) Effect of alkaline peroxide treatment on the chemical compositions and characteristics of lignocellulosic nanofibrils. BioRes 14:193–206

    CAS  Google Scholar 

  • Sheikh J, Bramhecha I (2019) Multi-functionalization of linen fabric using a combination of chitosan, silver nanoparticles and TamarindusIndica L. seed coat extract. Cellulose 26:8895–8905. https://doi.org/10.1007/s10570-019-02684-7

    Article  CAS  Google Scholar 

  • Silva G, Kim S, Aguilar R, Nakamatsu J (2020) Natural fibers as reinforcement additives for geopolymers–a review of potential eco-friendly applications to the construction industry. Sustain Mater Technol 23:e00132

    CAS  Google Scholar 

  • Sorieul M, Dickson A, Hill SJ, Pearson H (2016) Plant fibre: molecular structure and biomechanicalproperties, of a complex living material, influencingits deconstruction towards a biobased composite. Materials 9:618

    PubMed Central  Google Scholar 

  • Spitz RD (1961) Stabilization of peroxide bleach liquors with organic chelating agents. Tappi 44:731–734

    CAS  Google Scholar 

  • Stana-Kleinschek K, Strnad S, Ribitch V (1999) Surface characterization and adsorption abilities of cellulose fibers. Polym Eng Sci 39:1412–1424

    CAS  Google Scholar 

  • Sun SN, Yuan TQ, Li MF, Cao XF, Xu F, Liu QY (2012) Structural characterization of hemicelluloses from bamboo culms (Neosinocalamus Affinis). Cellul Chem Technol 46:165–176

    CAS  Google Scholar 

  • Šurina R, Andrassy M (2013) Effect of preswelling and ultrasound treatment on the properties of flax fibers cross-linked with polycarboxylic acids. Text Res J 83(1):66–75

    Google Scholar 

  • Taha AS, Abo Elgat WAA, Salem MZM, Ali HM, Fares YGE, Elshikh MS (2019) Impact of some plant source additives on enhancing the properties and antifungal activities of pulp made from linen fibers. BioRes 14(3):6025–6046

    CAS  Google Scholar 

  • TAPPI T-430, om-94 (1998) Copper number: Pulp, paper and paper board

  • TAPPI UM 246 (1991) Micro Kappa number. TAPPI useful methods. TAPPI, Atlanta

  • Tarbuk A, Grgić K, Toshikj E, Domović D, Dimitrovski D, Dimova V, Jordanov I (2020) Monitoring of cellulose oxidation level by electrokinetic phenomena and numeric prediction model. Cellulose 27:3107–3119

    CAS  Google Scholar 

  • Tavcer PF, Krizman P (2003) Bleaching of cotton fibres for sanitary products with peracetic acid. Tekstil 52:309–315

    CAS  Google Scholar 

  • Toshikj E, Tarbuk A, Grgic K, Mangovska B, Jordanov I (2019) Influence of different oxidizing systems on cellulose oxidation level: introduced groups versus degradationmodel. Cellulose 2:777–794

    Google Scholar 

  • Yadav R, Anubhav MP, Sheikh J (2019) Antibacterial, UV protective and antioxidant linen obtained by natural dyeing with henna. Cellulose Chem Technol 53(3–4):357–362

    CAS  Google Scholar 

  • Zahran MK, Ahmed HB (2010) A greener approach for full flax bleaching. J Tex Inst 101:674–678

    CAS  Google Scholar 

  • Zhang W, Okubayashi S, Bechtold T (2005) Fibrillation of cellulosic fibers Part 4. Effects of alkali pre-treatment of various cellulosic fibers. Carbohyd Polym 61:427–433

    CAS  Google Scholar 

  • Zimniewska M, Rozańska W, Gryszczynska A, Romanowska B, Kicinska-Jakubowska A (2018) Antioxidant Potential of Hemp and Flax Fibers Depending on Their Chemical Composition. Molecules 23(8):199

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 451-03-68/2020-14/200135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana M. Kostic.

Ethics declarations

Conflict of interest

The authors declare that there is no conflicts of interests/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazic, B.D., Janjic, S.D., Korica, M. et al. Electrokinetic and sorption properties of hydrogen peroxide treated flax fibers (Linum usitatissimum L.). Cellulose 28, 2889–2903 (2021). https://doi.org/10.1007/s10570-021-03686-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-03686-0

Keywords

Navigation