Skip to main content
Log in

Cellulose/biochar aerogels with excellent mechanical and thermal insulation properties

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Aiming at investigating the use of alternative materials for the production of thermal insulation and, mainly, to replace the carbon structures (graphene and nanotubes), extensively used in the development of aerogels, the present study had the objective to produce cellulose/biochar aerogels and to evaluate their properties. The aerogels were produced from Pinus elliottii cellulose fibers and biochar produced from these fibers. The materials were characterized in their physical, thermal and mechanical properties. They were extremely light and porous, with a density between 0.01 and 0.027 g cm−3 and porosity between 93 and 97%. Several percentages of biochars were added to the cellulose suspension (0–100% w/w). The use of 40 wt% biochar provided a 60% increase in the compressive strength of the aerogel in relation to the cellulose aerogel. Besides that, the addition of this carbonaceous structure did not influence significantly the thermal conductivity of the aerogels, which presented a thermal conductivity of 0.021–0.026 W m−1 K−1. The materials produced in the present research present a great potential to be used as insulators due to the low thermal conductivity found, which was very similar to the thermal conductivity of the air and also of commercial materials such as polyurethane foam and expanded polystyrene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aulin C, Netrval J, Wagberg L, Lindstrom T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6(14):3298–3305

    Article  CAS  Google Scholar 

  • Bakierska M, Molenda M, Majda D, Dziembaj R (2014) Functional starch based carbon aerogels for energy applications. Procedia Eng 98:14–19

    Article  CAS  Google Scholar 

  • Basu P (2010) Biomass gasification and pyrolysis: practical design and theory. Academic Press, Burlington

    Google Scholar 

  • Cetiner I, Shea AD (2018) Wood waste as an alternative thermal insulation for buildings. Energy Build 168:374–384

    Article  Google Scholar 

  • Chang X, Chen D, Jiao X (2010) Starch-derived carbon aerogels with high-performance for sorption of cationic dyes. Polymer 51(16):3801–3807

    Article  CAS  Google Scholar 

  • Cong L, Li X, Ma L, Peng Z, Yang C, Han P, Wang G, Li H, Song W, Song G (2018) High-performance graphene oxide/carbon nanotubes aerogel-polystyrene composites: preparation and mechanical properties. Mater Lett 214:190–193

    Article  CAS  Google Scholar 

  • Du A, Zhou B, Zhang Z, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6(3):941–968

    Article  CAS  Google Scholar 

  • Dunnigan L, Ashman PJ, Zhang X, Kwong CW (2018) Production of biochar from rice husk: particulate emissions from the combustion of raw pyrolysis volatiles. J Clean Prod 172:1639–1645

    Article  CAS  Google Scholar 

  • EPE (2018) Anuário estatístico de energia elétrica 2018. Empresa de pesquisa energética. http://www.epe.gov.br/en/publicacoes-dados-abertos/publicacoes/anuario-estatistico-de-energia-electrica. Accessed 25 Apr 2019

  • Feng J, Nguyen ST, Fan Z, Duong HM (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175

    Article  CAS  Google Scholar 

  • Fu J, Wang S, He C, Lu Z, Huang J, Chen Z (2016) Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold. Carbohydr Polym 147:89–96

    Article  CAS  Google Scholar 

  • Ge X, Shan Y, Wu L, Um X, Peng H, Jiang Y (2018) High-strength and morphology-controlled aerogel based on carboxymethyl cellulose and graphene oxide. Carbohydr Polym 197(June):277–283

    Article  CAS  Google Scholar 

  • Gupta P, Singh B, Agrawal AK, Maji PK (2018) Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application. Mater Des 158:224–236

    Article  CAS  Google Scholar 

  • Han S, Sun Q, Zheng H, Li J, Jin C (2016) Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution. Carbohydr Polym 136:95–100

    Article  CAS  Google Scholar 

  • Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J (2014) Polymer/graphene hybrid aerogel with high compressibility, conductivity, and “sticky” superhydrophobicity. ACS Appl Mater Interfaces 6:3242–3249

    Article  CAS  Google Scholar 

  • Hwang HC, Woo JS, Park SY (2018) Flexible carbonized cellulose/single-walled carbon nanotube films with high conductivity. Carbohydr Polym 196:168–175

    Article  CAS  Google Scholar 

  • IEA (2019) Energy Efficiency Indicators Database. International Energy Agency. https://www.iea.org/statistics/efficiency/. Accessed 25 Apr 2019

  • Incropera FP, Dewitt DP, Bergman TL, Lavine AS (2007) Fundamentos de transferência de calor e massa. Wiley, New York

    Google Scholar 

  • Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135

    Article  CAS  Google Scholar 

  • Jiménez-Saelices C, Seantier B, Cathala B, Grohens Y (2017) Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydr Polym 157:105–113

    Article  Google Scholar 

  • Karadagli I, Schulz B, Schestakow M, Milow B, Gries T, Ratke L (2015) The Journal of Supercritical Fluids Production of porous cellulose aerogel fibers by an extrusion process. J Supercrit Fluids 106:105–114

    Article  CAS  Google Scholar 

  • Lazzari LK, Zampieri VB, Zanini M, Zattera AJ, Baldasso C (2017) Sorption capacity of hydrophobic cellulose cryogels silanized by two different methods. Cellulose 24(8):3421–3431

    Article  CAS  Google Scholar 

  • Lazzari E, Schena T, Marcelo MCA, Primaz CT, Silva AN, Ferrao MF, Bjerk T, Caramao EB (2018) Classification of biomass through their pyrolytic bio-oil composition using FTIR and PCA analysis. Ind Crops Prod 111(November 2017):856–864

    Article  CAS  Google Scholar 

  • Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Jung J, Hyun S (2013) Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresour Technol 148:196–201

    Article  CAS  Google Scholar 

  • Lei E, Li W, Ma C, Liu S (2018) An ultra-lightweight recyclable carbon aerogel from bleached softwood kraft pulp for efficient oil and organic absorption. Mater Chem Phys 214:291–296. https://doi.org/10.1016/j.matchemphys.2018.04.075

    Article  CAS  Google Scholar 

  • Li C, Cheng X, Li Z, Pan Y, Huang Y, Gong L (2017) Mechanical, thermal and flammability properties of glass fiber film/silica aerogel composites. J Non-Cryst Solids 457:52–59

    Article  CAS  Google Scholar 

  • Mi HY, Jing X, Politowicz AL, Chen E, Huang HX, Turng LS (2018) Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon 132:199–209

    Article  CAS  Google Scholar 

  • Nguyen ST, Feng J, Ng SK, Wong JPW, Tan VBC, Duong HM (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids Surf A 445:128–134

    Article  CAS  Google Scholar 

  • Neves RM, Lopes KS, Zimmermann MGV, Polleto M, Zattera AJ (2019) Cellulose nanowhiskers extracted from Tempo-oxidized curaua fibers. J Nat Fibers. https://doi.org/10.1080/15440478.2019.1568346

    Article  Google Scholar 

  • Papadopoulos AM, Giama E (2007) Environmental performance evaluation of thermal insulation materials and its impact on the building. Build Environ 42(5):2178–2187

    Article  Google Scholar 

  • Perondi D, Poletto P, Restelatto D, Manera C, Silva JC, Junges J, Collazo GC, Dettmer A, Godinho M, Vilela ACF (2017) Steam gasification of poultry litter biochar for bio-syngas production. Process Saf Environ Prot 109:478–488

    Article  CAS  Google Scholar 

  • Ren F, Li Z, Tan WZ, Liu XH, Sun ZF, Ren PG, Yan DX (2018) Facile preparation of 3D regenerated cellulose/graphene oxide composite aerogel with high-efficiency adsorption towards methylene blue. J Colloid Interface Sci 532:58–67

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71(13):1593–1599

    Article  CAS  Google Scholar 

  • Silva FMF (2013) Estudo de materiais de isolamento térmico inovadores. Universidade do Porto, Porto

    Google Scholar 

  • Skouteris G, Saroj D, Melidis P, Hai FI, Ouki S (2015) The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation—a critical review. Bioresour Technol 185:399–410

    Article  CAS  Google Scholar 

  • Wan C, Li J (2016) Graphene oxide/cellulose aerogels nanocomposite: preparation, pyrolysis, and application for electromagnetic interference shielding. Carbohydr Polym 150:172–179

    Article  CAS  Google Scholar 

  • Wiener M, Reichenauer G, Hemberger F, Ebert HP (2006) Thermal conductivity of carbon aerogels as a function of pyrolysis temperature. Int J Thermophys 27(6):1826–1843

    Article  CAS  Google Scholar 

  • Xiang C, Wang C, Guo R, Lan J, Lin S, Jiang S, Lai X, Zhang Y, Xiao H (2019) Synthesis of carboxymethyl cellulose-reduced graphene oxide aerogel for efficient removal of organic liquids and dyes. J Mater Sci 54(2):1872–1883

    Article  CAS  Google Scholar 

  • Xiao S, Gao R, Lu Y, Li J, Sun Q (2015) Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohydr Polym 119:202–209

    Article  CAS  Google Scholar 

  • Yang J, Zhang E, Li X, Zhang Y, Qu J, Yu ZZ (2016) Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98:50–57

    Article  CAS  Google Scholar 

  • Zanini M, Lavoratti A, Zimmermann MVG, Galiotto D, Matana F, Baldasso C, Zattera AJ (2017) Aerogel preparation from short cellulose nanofiber of the Eucalyptus species. J Cell Plast 53(5):503–512

    Article  CAS  Google Scholar 

  • Zhang H, Fang WH, Li YM, Tao WQ (2017) Experimental study of the thermal conductivity of polyurethane foams. Appl Therm Eng 115:528–538

    Article  CAS  Google Scholar 

  • Zhao Y, Li Y, Zhang R (2018) Silica aerogels having high flexibility and hydrophobicity prepared by sol–gel method. Ceram Int 44(17):21262–21268

    Article  CAS  Google Scholar 

  • Zheng Q, Javadi A, Sabo R, Cai Z, Gong S (2013) Polyvinyl alcohol (PVA)-cellulose nanofibril (CNF)-multiwalled carbon nanotube (MWCNT) hybrid organic aerogels with superior mechanical properties. RSC Adv 3(43):20816–20823

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the National Council for Scientific and Technological Development (CNPq) and the Foundation for Research Support of the State of Rio Grande do Sul (FAPERGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lídia K. Lazzari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazzari, L.K., Perondi, D., Zampieri, V.B. et al. Cellulose/biochar aerogels with excellent mechanical and thermal insulation properties. Cellulose 26, 9071–9083 (2019). https://doi.org/10.1007/s10570-019-02696-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02696-3

Keywords

Navigation