Skip to main content
Log in

Fabrication of β cyclodextrin containing AIE-active polymeric composites through formation of dynamic phenylboronic borate and their theranostic applications

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Since the first discovery by Tang in 2001, aggregation-induced emission (AIE) phenomenon has attracted considerable research interest in various fields. In this contribution, AIE-active composites (named as An-HPG-β-CD) have been fabricated via conjugation of AIE-active compound An-B(OH)2 and hyperbranched polyglycerol functionalized β cyclodextrin (HPG-β-CD) based on dynamic phenyl borate for the first time. The potential biomedical applications of these AIE-active composites for biological imaging and drug delivery applications were further explored. The successful preparation of An-HPG-β-CD composites was confirmed through a series of characterization techniques. The An-HPG-β-CD composites possess great water dispersibility, low cytotoxicity, excellent fluorescence properties and uniform size and morphology, which make them promising for cell imaging. Furthermore, the cavities of An-HPG-β-CD composites could be utilized for loading with doxorubicin for drug delivery applications. In conclusion, we have developed a novel method for fabrication of AIE-active An-HPG-β-CD composites through formation of dynamic phenylboronic borate between β cyclodextrin containing hyperbranched polyglycerol and phenylboronic containing AIE dye. These AIE-active composites are of great potential in biological imaging and drug delivery applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013

    Article  CAS  PubMed  Google Scholar 

  • Cao Q-Y, Jiang R, Liu M, Wan Q, Xu D, Tian J, Wei Y (2017a) Microwave-assisted multicomponent reactions for rapid synthesis of AIE-active fluorescent polymeric nanoparticles by post-polymerization method. Mater Sci Eng C-Mater 80:578–583

    Article  CAS  Google Scholar 

  • Cao Q-Y, Jiang R, Liu M, Wan Q, Xu D, Tian J, Wei Y (2017b) Preparation of AIE-active fluorescent polymeric nanoparticles through a catalyst-free thiol-yne click reaction for bioimaging applications. Mater Sci Eng C-Mater 80:411–416

    Article  CAS  Google Scholar 

  • Chen M, Li L, Nie H, Tong J, Yan L, Xu B, Qin A (2015) Tetraphenylpyrazine-based AIEgens: facile preparation and tunable light emission. Chem Sci 6(3):1932–1937

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Liu M, Huang Q, Huang L, Huang H, Deng F, Wei Y (2018) Facile preparation of fluorescent nanodiamond-based polymer composites through a metal-free photo-initiated RAFT process and their cellular imaging. Chem Eng J 337:82–90

    Article  CAS  Google Scholar 

  • Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Ding D, Li K, Liu B, Tang BZ (2013) Bioprobes based on AIE fluorogens. Acc Chem Res 46(11):2441–2453

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Liu L, Wang S, Zhu D (2010) Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors. Chem Soc Rev 39(7):2411–2419

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969

    Article  CAS  PubMed  Google Scholar 

  • Higuchi R, Fockler C, Dollinger G, Watson R (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11(9):1026–1030

    CAS  PubMed  Google Scholar 

  • Hong Y, Lam JW, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40(11):5361–5388

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Chen M, Li G, Pang Y, Wang D, Wu J, Sun J (2012) Biodegradable hyperbranched polyglycerol with ester linkages for drug delivery. Biomacromolecules 13(11):3552–3561

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Liu M, Luo S, Wang K, Wan Q, Deng F, Wei Y (2016) One-step preparation of AIE-active dextran via formation of phenyl borate and their bioimaging application. Chem Eng J 304:149–155

    Article  CAS  Google Scholar 

  • Huang H, Liu M, Jiang R, Chen J, Mao L, Wen Y, Wei Y (2017a) Facile modification of nanodiamonds with hyperbranched polymers based on supramolecular chemistry and their potential for drug delivery. J Colloid Interface Sci 513:198–204

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Xu D, Liu M, Jiang R, Mao L, Huang Q, Wei Y (2017b) Direct encapsulation of AIE-active dye with β cyclodextrin terminated polymers: self-assembly and biological imaging. Mater Sci Eng C-Mater 78:862–867

    Article  CAS  Google Scholar 

  • Huang H, Xu D, Liu M, Jiang R, Mao L, Huang Q, Wei Y (2017c) Direct encapsulation of AIE-active dye with β cyclodextrin terminated polymers: Self-assembly and biological imaging. Sci Eng C, Mat

    Google Scholar 

  • Huang H, Liu M, Tuo X, Chen J, Mao L, Wen Y, Wei Y (2018) One-step fabrication of PEGylated fluorescent nanodiamonds through the thiol-ene click reaction and their potential for biological imaging. Appl Surface Sci 439:1143–1151

    Article  CAS  Google Scholar 

  • Huang L, Yang S, Chen J, Tian J, Huang Q, Huang H, Wei Y (2019) A facile surface modification strategy for fabrication of fluorescent silica nanoparticles with the aggregation-induced emission dye through surface-initiated cationic ring opening polymerization. Mater Sci Eng C-Mater 94:270–278

    Article  CAS  Google Scholar 

  • Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11(17–18):812–818

    Article  CAS  PubMed  Google Scholar 

  • Leung CWT, Hong Y, Chen S, Zhao E, Lam JW, Tang BZ (2013) A photostable AIE luminogen for specific mitochondrial imaging and tracking. J Am Chem Soc 135(1):62–65

    Article  CAS  PubMed  Google Scholar 

  • Li K, Zhu Z, Cai P, Liu R, Tomczak N, Ding D, Hu Y (2013) Organic dots with aggregation-induced emission (AIE dots) characteristics for dual-color cell tracing. Chem Mater 25(21):4181–4187

    Article  CAS  Google Scholar 

  • Li Y, Shao A, Wang Y, Mei J, Niu D, Gu J, Shi J (2016) Morphology-tailoring of a red AIEgen from microsized rods to nanospheres for tumor-targeted bioimaging. Adv Mater 28:3187–3193

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Lam JWY, Tang BZ (2009) Aggregation-induced emission of silole molecules and polymers: fundamental and applications. J Inorg Organomet Polym Mater 19(3):249

    Article  CAS  Google Scholar 

  • Liu Y, Mao L, Liu X, Liu M, Xu D, Jiang R, Wei Y (2017) A facile strategy for fabrication of aggregation-induced emission (AIE) active fluorescent polymeric nanoparticles (FPNs) via post modification of synthetic polymers and their cell imaging. Mater Sci Eng C-Mater 79:590–595

    Article  CAS  Google Scholar 

  • Long Z, Liu M, Wang K, Deng F, Xu D, Liu L, Wei Y (2016) Facile synthesis of AIE-active amphiphilic polymers: self-assembly and biological imaging applications. Mater Sci Eng C-Mater 66:215–220

    Article  CAS  Google Scholar 

  • Long Z, Liu M, Jiang R, Wan Q, Mao L, Wan Y, Wei Y (2017) Preparation of water soluble and biocompatible AIE-active fluorescent organic nanoparticles via multicomponent reaction and their biological imaging capability. Chem Eng J 308:527–534

    Article  CAS  Google Scholar 

  • Luo J, Xie Z, Lam JW, Cheng L, Chen H, Qiu C, Zhu D (2001) Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole. Chem Commun 18:1740–1741

    Article  Google Scholar 

  • Mei J, Leung NL, Kwok RT, Lam JW, Tang BZ (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev 115(21):11718–11940

    Article  CAS  PubMed  Google Scholar 

  • Ofek P, Calderon M, Sheikhimehrabadi F, Ferber S, Haag R, Satchifainaro R (2014) Abstract 4391: multi-modal nanomedicine for glioblastoma. Can Res 74(19 Supplement):4391

    Google Scholar 

  • Ouyang H, Zhou M, Guo Y, He M, Huang H, Ye X, Yang S (2014) Metabolites profiling of Pulsatilla saponin D in rat by ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS/MS). Fitoterapia 96:152–158

    Article  CAS  PubMed  Google Scholar 

  • Peng L, Gao M, Cai X, Zhang R, Li K, Feng G, Liu B (2015) A fluorescent light-up probe based on AIE and ESIPT processes for β-galactosidase activity detection and visualization in living cells. J Mater Chem B 3(47):9168–9172

    Article  CAS  PubMed  Google Scholar 

  • Qiu LY, Wang RJ, Zheng C, Jin Y, Jin LQ (2010) β-cyclodextrin-centered star-shaped amphiphilic polymers for doxorubicin delivery. Nanomedicine 5(2):193–208

    Article  CAS  PubMed  Google Scholar 

  • Shao A, Xie Y, Zhu S, Guo Z, Zhu S, Guo J, Zhu W-H (2015) Far-Red and Near-IR AIE-Active fluorescent organic nanoprobes with enhanced tumor-targeting efficacy: shape specific effects. Angew Chem Int Ed 127(25):7383–7388

    Article  Google Scholar 

  • Shenoi RA, Lai BF, Kizhakkedathu JN (2012) Synthesis, characterization, and biocompatibility of biodegradable hyperbranched polyglycerols from acid-cleavable ketal group functionalized initiators. Biomacromolecules 13(10):3018

    Article  CAS  PubMed  Google Scholar 

  • Silva APD, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, Mccoy CP, And JTR, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97(5):1515

    Article  PubMed  Google Scholar 

  • Steinhilber D, Seiffert S, Heyman JA, Paulus F, Weitz DA, Haag R (2011) Hyperbranched polyglycerols on the nanometer and micrometer scale. Biomaterials 32(5):1311–1316

    Article  CAS  PubMed  Google Scholar 

  • Sunder A, Mülhaupt R, Haag R, Frey H (2000) Hyperbranched polyether polyols: a modular approach to complex polymer architectures. Adv Mater 12(3):235–239

    Article  CAS  Google Scholar 

  • Tao W, Liu Y, Jiang B, Yu S, Huang W, Zhou Y, Yan D (2011) A linear-hyperbranched supramolecular amphiphile and its self-assembly into vesicles with great ductility. J Am Chem Soc 134(2):762–764

    Article  PubMed  CAS  Google Scholar 

  • Tian J, Jiang R, Gao P, Xu D, Mao L, Zeng G, Wei Y (2017) Synthesis and cell imaging applications of amphiphilic AIE-active poly (amino acid) s. Mater Sci Eng C-Mater 79:563–569

    Article  CAS  Google Scholar 

  • Tilloy S, Monnaert V, Fenart L, Bricout H, Cecchelli R, Monflier E (2006) Methylated β-cyclodextrin as P-gp modulators for deliverance of doxorubicin across an in vitro model of blood–brain barrier. Bioorg Med Chem Lett 16(8):2154–2157

    Article  CAS  PubMed  Google Scholar 

  • Tong H, Hong Y, Dong Y, Häussler M, Lam JW, Li Z, Tang BZ (2006) Fluorescent “light-up” bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics. Chem Commun 35(35):3705–3707

    Article  Google Scholar 

  • Wan Q, Liu M, Xu D, Huang H, Mao L, Zeng G, Wei Y (2016) Facile fabrication of amphiphilic AIE active glucan via formation of dynamic bonds: self assembly, stimuli responsiveness and biological imaging. J Mater Chem B 4(22):4033–4039

    Article  CAS  PubMed  Google Scholar 

  • Wan Q, Huang Q, Liu M, Xu D, Huang H, Zhang X, Wei Y (2017) Aggregation-induced emission active luminescent polymeric nanoparticles: non-covalent fabrication methodologies and biomedical applications. Appl Mater Today 9:145–160

    Article  Google Scholar 

  • Wang T, Zhang C, Liang X-J, Liang W, Wu Y (2011) Hydroxypropyl-β-cyclodextrin copolymers and their nanoparticles as doxorubicin delivery system. J Pharm Sci 100(3):1067–1079

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Chen S, Lam JW, Qin W, Kwok RT, Xie N, Tang BZ (2013) Long-term fluorescent cellular tracing by the aggregates of AIE bioconjugates. J Am Chem Soc 135(22):8238–8245

    Article  CAS  PubMed  Google Scholar 

  • Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels (fluorescent probes in biological experiments). Science 281(5385):2013

    Article  PubMed  Google Scholar 

  • Weissleder R, Tung C, Mahmood U, Bogdanov A (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17(4):375–378

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Zhang Y, Hu Q, Tang Q, Xu J, Wu J, Xue W (2017) Biocompatible hyperbranched polyglycerol modified β-cyclodextrin derivatives for docetaxel delivery. Mat Sci Eng C 71:965–972

    Article  CAS  Google Scholar 

  • Yan L, Zhang Y, Xu B, Tian W (2016) Fluorescent nanoparticles based on AIE fluorogens for bioimaging. Nanoscale 8:2471–2487

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Xu D, Wan Q, Liu M, Tian J, Huang Q, Wei Y (2017) Construction of biodegradable and biocompatible AIE-active fluorescent polymeric nanoparticles by Ce(IV)/HNO 3 redox polymerization in aqueous solution. Mater Sci Eng C-Mater 78:191–197

    Article  CAS  Google Scholar 

  • Yuan Y, Chen Y, Tang BZ, Liu B (2014a) A targeted theranostic platinum (IV) prodrug containing a luminogen with aggregation-induced emission (AIE) characteristics for in situ monitoring of drug activation. Chem Commun 50(29):3868–3870

    Article  CAS  Google Scholar 

  • Yuan Y, Kwok RTK, Tang BZ, Liu B (2014b) Targeted theranostic platinum (IV) prodrug with a Built-In aggregation-induced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ. J Am Chem Soc 136(6):2546–2554

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang X, Wu Z, Gao X, Cheng C, Wang Z, Li C (2011) A hydrotropic β-cyclodextrin grafted hyperbranched polyglycerol co-polymer for hydrophobic drug delivery. Acta Biomater 7(2):585–592

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Hu W, Li J, Tao L, Wei Y (2012a) A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotube, graphene oxide, and nanodiamond. Toxicol Res 1(1):62–68

    Article  CAS  Google Scholar 

  • Zhang X, Qi H, Wang S, Feng L, Ji Y, Tao L, Wei Y (2012b) Cellular responses of aniline oligomers: a preliminary study. Toxicol Res 1(3):201–205

    Article  CAS  Google Scholar 

  • Zhang X, Wang S, Xu L, Feng L, Ji Y, Tao L, Wei Y (2012c) Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging. Nanoscale 4(18):5581–5584

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang X, Yang B, Hui J, Liu M, Liu W, Wei Y (2013) PEGylation and cell imaging applications of AIE based fluorescent organic nanoparticles via ring-opening reaction. Polym Chem 5(3):689–693

    Article  Google Scholar 

  • Zhang X, Zhang X, Yang B, Liu M, Liu W, Chen Y, Wei Y (2014a) Fabrication of aggregation induced emission dye-based fluorescent organic nanoparticles via emulsion polymerization and their cell imaging applications. Polym Chem 5(2):399–404

    Article  CAS  Google Scholar 

  • Zhang X, Zhang X, Yang B, Liu M, Liu W, Chen Y, Wei Y (2014b) Polymerizable aggregation induced emission dye based fluorescent nanoparticles for cell imaging applications. Polym Chem 5(2):356–360

    Article  CAS  Google Scholar 

  • Zhang X, Wang K, Liu M, Zhang X, Tao L, Chen Y, Wei Y (2015a) Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives. Nanoscale 7(27):11486–11508

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li D, Li Y, Yu J (2015b) Solvatochromic AIE luminogens as supersensitive water detectors in organic solvents and highly efficient cyanide chemosensors in water. Chem Sci 5(7):2710–2716

    Article  CAS  Google Scholar 

  • Zhang X, He M, Lei S, Wu B, Tan T, Ouyang H, Feng Y (2018a) An integrative investigation of the therapeutic mechanism of Ainsliaea fragrans Champ. in cervicitis using liquid chromatography tandem mass spectrometry based on a rat plasma metabolomics strategy. J Pharmaceut Biomed 156:221–231

    Article  CAS  Google Scholar 

  • Zhang X, Li J, Xie B, Wu B, Lei S, Yao Y, Yang S (2018b) Comparative metabolomics analysis of cervicitis in human patients and a phenol mucilage-induced rat model using liquid chromatography tandem mass spectrometry. Front Pharmacol 9:282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Nos. 21788102, 21865016, 51363016, 21474057, 21564006, 21561022, 21644014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naigen Zhou, Xiaoyong Zhang or Yen Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Liu, M., Chen, J. et al. Fabrication of β cyclodextrin containing AIE-active polymeric composites through formation of dynamic phenylboronic borate and their theranostic applications. Cellulose 26, 8829–8841 (2019). https://doi.org/10.1007/s10570-019-02674-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02674-9

Keywords

Navigation