Skip to main content
Log in

Surface tension of concentrated cellulose solutions in 1-ethyl-3-methylimidazolium acetate

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Four sources of cellulose with different molecular weights were dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate at 100 °C over a 10 h period. The solution densities were determined and these results were subsequently utilised to access the influence of dissolved cellulose on surface tension properties of cellulose/ionic liquid solutions. Surface tension measurements revealed increasing molecular weight and concentration reduced surface tension while temperature increases showed the opposite effect. These results are consistent with that of repulsive polymer-wall interactions near the interface in good solvent conditions. The semi-flexible nature of this carbohydrate in solution can help explain deviations of these results when compared to ideal flexible chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allain C, Ausserre D, Rondelez F (1982) Direct optical observation of interfacial depletion layers in polymer solutions. Phys Rev Lett 49(23):1694–1697

    Article  CAS  Google Scholar 

  • Ausserre D, Hervet H, Rondelez F (1985) Depletion layers in polymer solutions: influence of the chain persistence length. J Phys Lett 46(19):929–934

    Article  CAS  Google Scholar 

  • Bentivoglio G, Röder T, Fasching M, Buchberger M, Schottenberger H, Sixta H (2006) Cellulose processing with chloride-based ionic liquids. Lenzinger Berichte 86:154–161

    CAS  Google Scholar 

  • Cao Y, Li H, Zhang Y, Zhang J, He J (2010) Structure and properties of novel regenerated cellulose films prepared from cornhusk cellulose in room temperature ionic liquids. J Appl Polym Sci 116(1):547–554

    Article  CAS  Google Scholar 

  • Di Meglio JM, Ober R, Paz L, Taupin C, Pincus P, Boileau S (1983) Study of the surface tension of polymer solutions: theory and experiments in theta solvent conditions. J Phys 44(9):1035–1040

    Article  Google Scholar 

  • Duchemin BJC, Mathew AP, Oksman K (2009) All-cellulose composites by partial dissolution in the ionic liquid 1-butyl-3-methylimidazolium chloride: composites part A. Appl Sci Manufact 40(12):2031–2037

    Article  Google Scholar 

  • Dzyuba SV, Bartsch RA (2002) Influence of structural variations in 1-alkyl (aralkyl)-3-methylimidazolium hexafluorophosphates and bis (trifluoromethylsulfonyl) imides on physical properties of the ionic liquids. Chem Phys Chem 3(2):161–166

    CAS  Google Scholar 

  • Gardas RL, Dagade DH, Coutinho JAP, Patil KJ (2008) Thermodynamic studies of ionic interactions in aqueous solutions of imidazolium-based ionic liquids [Emim][Br] and [Bmim][Cl]. J Phys Chem B 112(11):3380–3389

    Article  CAS  Google Scholar 

  • Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10(5):1188–1194

    Article  CAS  Google Scholar 

  • Ghani NA, Sairi NA, Aroua MK, Alias Y, Yusoff R (2014) Density, surface tension, and viscosity of ionic liquids (1-ethyl-3-methylimidazolium diethylphosphate and 1, 3-dimethylimidazolium dimethylphosphate) aqueous ternary mixtures with MDEA. J Chem Eng Data 59(6):1737–1746

    Article  CAS  Google Scholar 

  • Hallac BB, Ragauskas AJ (2011) Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels Bioprod Biorefin 5(2):215–225

    Article  CAS  Google Scholar 

  • Jacquemin J, Husson P, Padua AAH, Majer V (2006) Density and viscosity of several pure and water-saturated ionic liquids. Green Chem 8(2):172–180

    Article  CAS  Google Scholar 

  • Kim MW, Cao BH (1993) Additional reduction of surface tension of aqueous polyethylene oxide (PEO) solution at high polymer concentration. EPL (Europhys Lett) 24(3):229

    Article  CAS  Google Scholar 

  • Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15(1):59–66

    Article  CAS  Google Scholar 

  • Krässig H, Schurz J, Steadman RG, Schliefer K, Albrecht W, Mohring M et al (2004) Cellulose. Ullmann’s Encycl Ind Chem 7:279–330

    Google Scholar 

  • Le KA, Sescousse R, Budtova T (2012) Influence of water on cellulose-EMIMAc solution properties: a viscometric study. Cellulose 19:45–54

    Article  CAS  Google Scholar 

  • Oosawa F, Asakura S (1954) Surface tension of high-polymer solutions. J Chem Phys 22(7):1255

    Google Scholar 

  • Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109(12):6712–6728

    Article  CAS  Google Scholar 

  • Redon C, Ausserre D, Rondelez F (1992) Concentration dependence of the interfacial tension of polymer solutions near repulsive walls and in good solvent. Macromolecules 25(22):5965–5969

    Article  CAS  Google Scholar 

  • Ries ME, Radhi A, Keating AS, Parker O, Budtova T (2014) Diffusion of 1-ethyl-3-methyl-imidazolium acetate in glucose, cellobiose, and cellulose solutions. Biomacromolecules 15(2):609–617

    Article  CAS  Google Scholar 

  • Ruan D, Zhang L, Lue A, Zhou J, Chen H, Chen X et al (2006) A rapid process for producing cellulose multi-filament fibers from a NaOH/thiourea solvent system. Macromol Rapid Commun 27(17):1495–1500

    Article  CAS  Google Scholar 

  • Sánchez LG, Espel JR, Onink F, Meindersma GW, Haan AB (2009) Density, viscosity, and surface tension of synthesis grade imidazolium, pyridinium, and pyrrolidinium based room temperature ionic liquids. J Chem Eng Data 54(10):2803–2812

    Article  Google Scholar 

  • Sescousse R, Le KA, Ries ME, Budtova T (2010) Viscosity of cellulose-imidazolium-based ionic liquid solutions. J Phys Chem B 114(21):7222–7228

    Article  CAS  Google Scholar 

  • Song B, Springer J (1996) Determination of interfacial tension from the profile of a pendant drop using computer-aided image processing: 1: theoretical. J Colloid Interface Sci 184(1):64–76

    CAS  Google Scholar 

  • Song H, Niu Y, Wang Z, Zhang J (2011) Liquid crystalline phase and gel-sol transitions for concentrated microcrystalline cellulose (MCC)/1-ethyl-3-methylimidazolium acetate (EMIMAc) solutions. Biomacromolecules 12:1087–1096

    Article  CAS  Google Scholar 

  • Stark A (2011) Ionic liquids in the biorefinery: a critical assessment of their potential. Energy Environ Sci 4(1):19–32

    Article  CAS  Google Scholar 

  • Stubenrauch C, Albouy PA, Klitzing RV, Langevin D (2000) Polymer/surfactant complexes at the water/air interface: a surface tension and X-ray reflectivity study. Langmuir 16(7):3206–3213

    Article  CAS  Google Scholar 

  • Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11(5):646–655

    Article  CAS  Google Scholar 

  • Sun N, Rodriguez H, Rahman M, Rogers RD (2011) Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun 47(5):1405–1421

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975

    Article  CAS  Google Scholar 

  • Terinte N, Ibbett R, Schuster KC (2011) Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): comparison between measurement techniques. Lenzinger Berichte 89:118–131

    CAS  Google Scholar 

  • Virtanen T, Svedström K, Andersson S, Tervala L, Torkkeli M, Knaapila M et al (2012) A physico-chemical characterisation of new raw materials for microcrystalline cellulose manufacturing. Cellulose 19:219–235

    Article  CAS  Google Scholar 

  • Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7(2):415–418

    Article  CAS  Google Scholar 

  • Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem 11(3):417–424

    Article  CAS  Google Scholar 

  • Vizárová K, Kirschnerová S, Kacik F, Brivskárová A, Suty S, Katuscák S (2012) Relationship between the decrease of degree of polymerisation of cellulose and the loss of groundwood pulp paper mechanical properties during accelerated ageing. Chem Pap 66(12):1124–1129

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Dumont D’Urville S&T programme and would like to thank D. Dallerac, K. Janel, A. Dufresne, J. Bréard, L. Bizet and J. Dormanns for assistance. The authors are very grateful to Cordenka GmbH and J. Rettenmaier & Söhne GmbH for the supply of materials. J.S. would like to acknowledge the financial assistance provided by a UC Doctoral Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Staiger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuermann, J., Huber, T., LeCorre, D. et al. Surface tension of concentrated cellulose solutions in 1-ethyl-3-methylimidazolium acetate. Cellulose 23, 1043–1050 (2016). https://doi.org/10.1007/s10570-015-0850-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0850-5

Keywords

Navigation