Skip to main content
Log in

Determination of molar mass distributions of highly oxidized dialdehyde cellulose by size exclusion chromatography and asymmetric flow field-flow fractionation

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Dialdehyde cellulose (DAC) has gained increasing interest because its (masked) aldehyde functionalities promise a rich follow-up chemistry and further conversion into different derivatives with varying properties. So far, the question of degradation upon DAC production and the resulting molar mass changes have remained unanswered since the problem of molar mass determination of DACs had not been solved. In this study, we present a comparison of two methods based on aqueous eluants, size exclusion chromatography and asymmetric flow field-flow fractionation (AsFlFFF), to determine the molar mass distribution of highly oxidized and thus water-soluble DACs, and to elucidate the impact of oxidation on the chain length of different cellulose substrates. Molar masses were determined by multi-angle laser light scattering in the case of both separation systems. The measurements were complemented by dynamic light scattering. AsFlFFF demonstrated an overall better separation efficiency, but at the expense of increased time consumption for method development. The results of molar mass analysis strongly depended on the eluant. Hemiacetal crosslinks are stable in near-neutral, low ionic strength eluants, while they have a tendency to be cleaved in acidic eluants or in solvents of higher ionic strength. By comparison of different dissolution strategies the optimal conditions for DAC analysis are proposed for both separation techniques. It is concluded that the extent of degradation upon dissolution can be significantly minimized by controlling the dissolution parameters, but degradation cannot be avoided completely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Berggren R, Berthold F, Sjöholm E, Lindström M (2003) Improved methods for evaluating the molar mass distributions of cellulose in kraft pulp. J Appl Polym Sci 88:1170–1179. doi:10.1002/app.11767

    Article  CAS  Google Scholar 

  • Calvini P, Gorassini A, Luciano G, Franceschi E (2006) FTRI and WAXS analysis of periodate oxycellulose: evidence for a cluster mechanism of oxidation. Vib Spectrosc 40:177–183. doi:10.1016/j.vibspec.2005.08.004

    Article  CAS  Google Scholar 

  • Carmali S, Brocchini S (2014) Chapter 13: polyacetals. In: Deng SGKTL (ed) Natural and synthetic biomedical polymers. Elsevier, Oxford, pp 219–233

    Chapter  Google Scholar 

  • Cheong K-L, Wu D-T, Zhao J, Li S-P (2015) A rapid and accurate method for the quantitative estimation of natural polysaccharides and their fractions using high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detector. J Chromatogr A 1400:98–106. doi:10.1016/j.chroma.2015.04.054

    Article  CAS  Google Scholar 

  • Fiedorowicz M, Para A (2006) Structural and molecular properties of dialdehyde starch. Carbohydr Polym 63:360–366. doi:10.1016/j.carbpol.2005.08.054

    Article  CAS  Google Scholar 

  • Habibi Y, Chanzy H, Vignon M (2006) Tempo-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687. doi:10.1007/s10570-006-9075-y

    Article  CAS  Google Scholar 

  • Hasani M, Henniges U, Idstroem A, Nordstierna L, Westman G, Rosenau T, Potthast A (2013) Nano-cellulosic materials: the impact of water on their dissolution in DMAc/LiCl. Carbohydr Polym 98:1565–1572. doi:10.1016/j.carbpol.2013.07.001

    Article  CAS  Google Scholar 

  • Kim U-J, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488–492. doi:10.1021/bm0000337

    Article  CAS  Google Scholar 

  • Kim U-J, Wada M, Kuga S (2004) Solubilization of dialdehyde cellulose by hot water. Carbohydr Polym 56:7–10. doi:10.1016/j.carbpol.2003.10.013

    Article  CAS  Google Scholar 

  • Li J, Wan Y, Li L, Liang H, Wang J (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C 29:1635–1642. doi:10.1016/j.msec.2009.01.006

    Article  CAS  Google Scholar 

  • Li H, Wu B, Mu C, Lin W (2011) Concomitant degradation in periodate oxidation of carboxymethyl cellulose. Carbohydr Polym 84:881–886. doi:10.1016/j.carbpol.2010.12.026

    Article  CAS  Google Scholar 

  • Maekawa E, Kosaki T, Koshijima T (1986) Periodate oxidation of mercerized cellulose and regenerated cellulose. Wood Res Bull Wood Res Inst Kyoto Univ 73:44–49

    CAS  Google Scholar 

  • Marianne M-F (1998) Molecular weights and molecular-weight distributions of cellulose and cellulose nitrates during ultrasonic and mechanical degradation. Cellul Deriv Am Chem Soc 688:184–193

    Google Scholar 

  • Perlin AS (2006) Glycol-cleavage oxidation. In: Derek H (ed) Advances in carbohydrate chemistry and biochemistry. Academic Press, New York, pp 183–250

    Google Scholar 

  • Potthast A, Rosenau T, Kosma P (2006) Analysis of oxidized functionalities in cellulose. In: Klemm D (ed) Polysaccharides II. Springer, Berlin, pp 1–48

    Chapter  Google Scholar 

  • Potthast A, Kostic M, Schiehser S, Kosma P, Rosenau T (2007) Studies on oxidative modifications of cellulose in the periodate system: molecular weight distribution and carbonyl group profiles. Holzforschung 61:662–667. doi:10.1515/HF.2007.099

    Article  CAS  Google Scholar 

  • Potthast A, Schiehser S, Rosenau T, Kostic M (2009) Oxidative modifications of cellulose in the periodate system: reduction and beta-elimination reactions. Holzforschung 63:12–17. doi:10.1515/HF.2009.108

    Article  CAS  Google Scholar 

  • Potthast A, Radosta S, Saake B, Lebioda S, Heinze T, Henniges U, Isogai A, Koschella A, Kosma P, Rosenau T, Schiehser S, Sixta H, Strlič M, Strobin G, Vorwerg W, Wetzel H (2015) Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol. Cellulose 22:1591–1613. doi:10.1007/s10570-015-0586-2

    Article  CAS  Google Scholar 

  • Rosenau T, Potthast A, Krainz K, Yoneda Y, Dietz T, Shields Z-I, French A (2011) Chromophores in cellulosics, VI. First isolation and identification of residual chromophores from aged cotton linters. Cellulose 18:1623–1633. doi:10.1007/s10570-011-9585-0

    Article  CAS  Google Scholar 

  • Rosenau T, Potthast A, Krainz K, Hettegger H, Henniges U, Yoneda Y, Rohrer C, French A (2014) Chromophores in cellulosics, XI: isolation and identification of residual chromophores from bacterial cellulose. Cellulose 21:2271–2283. doi:10.1007/s10570-014-0289-0

    Article  CAS  Google Scholar 

  • Sihtola H (1960) Chemical properties of modified celluloses. Makromol Chem 35:250–265. doi:10.1002/macp.1960.020350113

    Article  CAS  Google Scholar 

  • Siller M, Amer H, Bacher M, Roggenstein W, Rosenau T, Potthast A (2015) Effects of periodate oxidation on cellulose polymorphs. Cellulose. doi:10.1007/s10570-015-0648-5

    Google Scholar 

  • Stefanovic B, Rosenau T, Potthast A (2013) Effect of sonochemical treatments on the integrity and oxidation state of cellulose. Carbohydr Polym 92:921–927. doi:10.1016/j.carbpol.2012.09.039

    Article  CAS  Google Scholar 

  • Varma AJ, Chavan VB (1995) A study of crystallinity changes in oxidised celluloses. Polym Degrad Stab 49:245–250. doi:10.1016/0141-3910(95)87006-7

    Article  CAS  Google Scholar 

  • Vold IMN, Christensen BE (2005) Periodate oxidation of chitosans with different chemical compositions. Carbohydr Res 340:679–684. doi:10.1016/j.carres.2005.01.002

    Article  CAS  Google Scholar 

  • Vold IMN, Kristiansen KA, Christensen BE (2006) A study of the chain stiffness and extension of alginates, in vitro epimerized alginates, and periodate-oxidized alginates using size-exclusion chromatography combined with light scattering and viscosity detectors. Biomacromolecules 7:2136–2146. doi:10.1021/bm060099n

    Article  Google Scholar 

  • Xiang Q, Lee YY, Pettersson PO, Torget RW (2003) Heterogeneous aspects of acid hydrolysis of [alpha]-cellulose. Appl Biochem Biotechnol 107:505–514. doi:10.1385/ABAB:107:1-3:505

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of Christian Doppler Laboratory “Advanced Cellulose Chemistry and Analytics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje Potthast.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulaeva, I., Klinger, K.M., Amer, H. et al. Determination of molar mass distributions of highly oxidized dialdehyde cellulose by size exclusion chromatography and asymmetric flow field-flow fractionation. Cellulose 22, 3569–3581 (2015). https://doi.org/10.1007/s10570-015-0769-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0769-x

Keywords

Navigation