Skip to main content

Advertisement

Log in

Forest residues as renewable resources for bio-based polymeric materials and bioenergy: chemical composition, structure and thermal properties

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The potential of three different logging residues (woody chips, branches and pine needles) as renewable resources to produce environmentally friendly polymeric materials and/or biofuel has been critically evaluated in terms of their structure, chemical composition and thermal properties. Woody chips constitute the most attractive forest residue to be processed into polymeric materials in terms of their highest cellulose content, crystallinity and thermal stability. In contrast, pine needles and branches offer higher heating values and optimum product distribution for solid fuel applications due to their higher lignin content. In general, forest residual biomass has great potential for conversion into new added value products, such as composites or solid biofuel, thus constituting a sustainable waste management procedure from a biorefinery perspective. The correlation between the chemical and structural properties with the thermal/pyrolytic behavior of residual biomass offers valuable insights to assess their sustainable exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahtee M, Hattula T, Mangs J, Paakkari T (1983) X-ray diffraction method for determination of crystallinity of wood pulp. Pap Puu 85:475–480

    Google Scholar 

  • Amutio M, Gartzen L, Alvarez J, Moreira R, Duarte G, Nunes J, Olazar M, Bilbao J (2013) Pyrolyisis kinetics of forestry residues from the Portuguese Central Inland Region. Chem Eng Res Des 91:2682–2690

    Article  CAS  Google Scholar 

  • Andersson S, Serimaa R, Paakkari T, Saranpää P, Pesonen E (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). Wood Sci 49:531–537

    Google Scholar 

  • Baeza J, Freer J (2000) Chemical characterization of wood and its components. In: Hon D, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker Inc, NewYork, pp 275–384

    Google Scholar 

  • Balogun AO, Lasode OA, Li H, McDonald AG (2015) Fourier transform infrared (FTIR) study and thermal decomposition kinetics of Sorghum bicolour Glume and Albizia pedicellaris residues. Waste Biomass Valor 6:109–116

  • Beck-Candanedo S, Roman M, Gray D (2005) Effect of conditions on the properties behavior of wood cellulose nanocrystals suspensions. Biomacromolecules 6:1048–1054

    Article  CAS  Google Scholar 

  • Chauhan GS, Chauhan K, Chauhan S, Kumar S, Kumari A (2007) Functionalization of pine needles by carboxymethylation and network formation for use as supports in the adsorption of Cr6+. Carbohydr Polym 70(4):415–421

    Article  CAS  Google Scholar 

  • Ciucanu I, Kerek F (1984) A simple and rapid method for permethylation of carbohydrate polymers. Carbohydr Res 131:209–217

    Article  CAS  Google Scholar 

  • Dong C, Parsons D, Davies IJ, Dong C, Parsons D, Davies IJ (2014) Tensile strength of pine needles and their feasibility as reinforcement in composite materials. J Mater Sci 49:8057–8062

    Article  CAS  Google Scholar 

  • Erol M, Haykiri-Acma H, Küçükbayrak S (2010) Calorific value estimation of biomass from their proximate analyses data. Renew Energy 35(1):170–173

    Article  CAS  Google Scholar 

  • Fengel D (1978) On the fibrillar structure of cellulose from wood. Holzforschung 32:37–44

    Article  CAS  Google Scholar 

  • Font R, Conesa JA, Moltó J, Munoz M (2009) Kinetics of pyrolysis and combustion of pine needles and cones. J Anal Appl Pyrol 85:276–286

    Article  CAS  Google Scholar 

  • Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Appl Polym Sci Part C Polym Symp 6:183–195

    Article  Google Scholar 

  • Gronli MG, Várhegyi G, Di Blasi C (2002) Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res 41:4201–4208

    Article  CAS  Google Scholar 

  • Le Normand M, Moriana R, Ek M (2014) Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohydr Polym 2014(111):979–987

    Article  Google Scholar 

  • Liu Q, Zhong Z, Wang S, Luo Z (2011) Interactions of biomass components during pyrolysis: a TG-FTIR study. J Anal Appl Pyrolysis 90:213–218

    Article  CAS  Google Scholar 

  • McIntosh S, Vancov T (2011) Optimisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Biomass Bioenergy 35:3094

    Article  CAS  Google Scholar 

  • Miranda I, Gominho J, Mirra I, Pereira H (2012) Chemical characterization of barks from Picea abies and Pinus sylvestris after fractioning into different particle sizes. Ind Crops Prod 36:395

    Article  CAS  Google Scholar 

  • Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(277):1–24

    Article  Google Scholar 

  • Moriana R, Vilaplana F, Sigbritt K, Ribes-Greus A (2011) Improved thermo-mechanical properties by the addition of natural fibres in starch-based sustainable biocomposites. Compos Part A Appl Sci Manuf 42:30–40

    Article  Google Scholar 

  • Moriana R, Vilaplana F, Karlsson S, Ribes A (2014a) Correlation of chemical, structural and thermal properties of natural fibres for their sustainable exploitation. Carbohydr Polym 112:422–431

    Article  CAS  Google Scholar 

  • Moriana R, Zhang Y, Mischnick P, Li J, Ek M (2014b) Thermal degradation behaviour and kinetic analysis of spruce glucomannan: a comparative study with the methylated derivatives. Carbohydr Polym 106:60–70

    Article  CAS  Google Scholar 

  • Moriana R, Strömberg S, Ribes A, Sigbritt K (2014c) Degradation behaviour of natural fibre reinforced starch-based polymer composites under different environments. J Renew Mater 2:145–153

    Article  CAS  Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and 11*. J Appl Polym Sci 8:1325–1341

    Article  CAS  Google Scholar 

  • Nomura T, Yamada T (1972) Structural observation on wood and bamboo by X-ray. Wood Res 52:1–10

    Google Scholar 

  • NREL (2005) Determination of extractives in biomass. Laboratory analytical procedure. NREL, Golden

    Google Scholar 

  • Ohad I, Danon D (1964) On the dimensions of cellulose microfibrils. J Cell Biol 22(1):302–305

    Article  CAS  Google Scholar 

  • Ohad I, Danon D, Hestrin S (1962) Synthesis of cellulose by acetobacter xylinum. V. Ultrastructure of polymer. J Cell Biol 12(1):31–46

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10

    Article  Google Scholar 

  • Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013) Influence of drying method on the materials propertis of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392

    Article  CAS  Google Scholar 

  • Pettolino FA, Walsh C, Fincher GB, Bacic A (2012) Determining the polysaccharide composition of plant cell walls. Nat Protoc 7(9):1590–1607

    Article  CAS  Google Scholar 

  • Poletto M, Pistor V, Zeni M, Zattera AJ (2011) Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping process. Polym Degrad Stab 96:679–685

    Article  CAS  Google Scholar 

  • Poletto M, Júnior OLH, Zattera AJ (2014) Native cellulose: structure, characterization and thermal properties. Materials 7:6105–6119

    Article  CAS  Google Scholar 

  • Popescu MC, Popescu CM, Lisa G, Sakata Y (2011) Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J Mol Struct 988:65–72

    Article  CAS  Google Scholar 

  • Raveendran K, Ganesh A, Khilar KC (1995) Influence of mineral matter on biomass pyrolysis characteristics. Fuel 74(12):1812–1822

    Article  CAS  Google Scholar 

  • Sahin HT, Arslan MB (2011) Weathering performance of particleboards manufactured from blends of forest residues with red pine (pinus brutia) wood. Wood Sci Technol 13(3):337–346

    CAS  Google Scholar 

  • Samuelsson LN, Moriana R, Bables MU, Ek M, Engvall K (2014) Model-free rate expression for thermal decomposition processes: the case of microcrystalline cellulose pyrolysis. Fuel 143:438–447

    Article  Google Scholar 

  • Schnepf E (1965) Struktur der Zellwände und Cellulosefibrillen bei Glaucocystis. Planta 67:213–224

    Article  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Shebani AN, Van Reenen AJ, Meincken M (2008) The effect of wood extractives on the thermal stability of different wood species. Thermochim Acta 471(1–2):43–50

    Article  CAS  Google Scholar 

  • Silvério HA, Ilvério HA, Flauzino Neto WP, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436

    Article  Google Scholar 

  • Siqueira G, Abdillahi H, Bras J, Dufresne A (2010) High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose 17(2):289–298

    Article  CAS  Google Scholar 

  • Sjöström E (1981) Wood chemistry, fundamentals and applications. Academic Press Inc, London

    Google Scholar 

  • Tanaka F, Koshijima T, Okamura K (1981) Characterization of cellulose in compression and opposite woods of a Pinus densiflora tree grown under the influense of strong wind. Wood Sci Technol 15:265–273

    Article  Google Scholar 

  • TAPPI (2006) Acid insoluble lignin in wood and pulp T 222 om-06. In: US Technical Association of Pulp and Paper Industry

  • TAPPI (2012) Ash in wood, pulp, paper and paperboard: combustion at 525 °C T211 om-02. In: US Technical Association of Pulp and Paper Industry

  • Thakur VK, Singha AS (2010) Mechanical and water absorption properties of natural fibers/polymer biocomposites. Polym Plast Technol Eng 49:694–700

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS (2011) Physiochemical and mechanical behaviour of cellulosic pine needle-based biocomposites. Int J Polym Anal Charact 16:390–398

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Mehta IK (2010) Renewable resource based green polymer composites: analysis and characterization. Int J Polym Anal Charact 15:137–146

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2011) Fabrication and physico-chemical properties of high-performance pine needles/green polymer composites. Int J Polym Mater 62:226–230

    Article  Google Scholar 

  • Willför S, Pranovich A, Tamminen T, Puls J, Laine C, Suurnäkki A, Saake B, Uotila K, Simolin H, Hemming J, Holmbom B (2009) Carbohydrate analysis of plant materials with uronic acid-containing polysaccharides—a comparison between different hydrolysis and subsequent chromatographic analytical techniques. Ind Crops Prod 29:571–580

  • Yemele MCN, Koubaa A, Cloutier A, Soulounganga P, Wolcott M (2010) Effect of bark fiber content and size on the mechanical properties of bark/HDPE composites. Compos Part A Appl Sci Manuf 41(1):131–137

    Article  Google Scholar 

Download references

Acknowledgments

RM would like to acknowledge the Wallenberg and Lars-Erik Thunholm Foundation for the research post-doctoral position.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosana Moriana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moriana, R., Vilaplana, F. & Ek, M. Forest residues as renewable resources for bio-based polymeric materials and bioenergy: chemical composition, structure and thermal properties. Cellulose 22, 3409–3423 (2015). https://doi.org/10.1007/s10570-015-0738-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0738-4

Keywords

Navigation