Skip to main content
Log in

Bounded Martian satellite relative motion

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Satellite relative motion around the Earth has been thoroughly studied during the last two decades. However, considerably less attention has been given to the study of satellite relative motion around Mars. As the cost of space technologies decreases and more space missions are within reach, formation flying missions around Mars have the potential to benefit future exploration missions launched to the Red Planet. A key parameter in such missions will be the frequency at which the spacecraft need to perform formation-keeping maneuvers to compensate for unwanted drifts due to differential perturbations. The Martian \(J_3\) and \(J_4\) gravitational harmonics are significant enough to warrant a dedicated investigation of bounded satellite relative motion configurations. In this study, we derive conditions for bounded satellite relative motion in non-critical inclinations around Mars, while considering its gravitational harmonics up to \(J_4\). We first introduce a family of stable frozen orbits facilitating the implementation of formation flying and then apply differential nodal precession negation and differential periapsis rotation negation methods while considering the gravitational harmonics up to \(J_4\). Using this procedure, we demonstrate how the secular growth of the relative distance can be arrested during long time intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. https://opensource.gsfc.nasa.gov/projects/GMAT.

References

  • Alfriend, K.T., Vadali, S.R., Gurfil, P., How, J.P., Breger, L.S.: Spacecraft Formation Flying: Dynamics, Control and Navigation. Elsevier, Amsterdam (2010)

    Google Scholar 

  • Aorpimai, M., Palmer, P.L.: Analysis of frozen conditions and optimal frozen orbit insertion. J. Guidance Control Dyn. 26(5), 786–793 (2003)

    Article  ADS  Google Scholar 

  • Broucke, R.A.: Numerical integration of periodic orbits in the main problem of artificial satellite theory. Celest. Mech. Dyn. Astron. 58(2), 99–123 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  • Brouwer, D.: Solution of the problem of artificial satellite theory. Astron. J. 64(1274), 378–396 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  • Carter, T.E., Humi, M.: Fuel-optimal rendezvous near a point in general Keplerian orbit. J. Guidance Control Dyn. 10(6), 567–573 (1987)

    Article  ADS  Google Scholar 

  • Clohessy, W., Wiltshire, R.: Terminal guidance system for satellite rendezvous. J. Guidance Control Dyn. 27(9), 653–658 (1960)

    MATH  Google Scholar 

  • Coffey, S.L., Deprit, A., Miller, B.L.: The critical inclination in artificial satellite theory. Celest. Mech. Dyn. Astron. 39(4), 365–406 (1986)

    Article  MathSciNet  Google Scholar 

  • Coffey, S.L., Deprit, A., Deprit, E.: Frozen orbits for satellites close to an Earth-like planet. Celest. Mech. Dyn. Astron. 59(1), 37–72 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  • Cutting, E., Born, G.H., Frautnick, J.C.: Orbit analysis for SEASAT-A. J Astronaut. Sci. 26(4), 315–342 (1978)

    Google Scholar 

  • Gurfil, P., Kholshevnikov, K.V.: Manifolds and metrics in the relative spacecraft motion problem. J. Guidance Control Dyn. 29(4), 1004–1010 (2006)

    Article  ADS  Google Scholar 

  • Gurfil, P., Lara, M.: Motion near frozen orbits as a means for mitigating satellite relative drift. Celest. Mech. Dyn. Astron. 116(3), 213–227 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Inalhan, G., Hall, J.: Relative dynamics and control of spacecraft formations in eccentric orbits. J. Guidance Control Dyn. Conf., AIAA-2000-4443

  • Izzo, P., Rosengren, A.J., Dell’Elce, L., Gurfil, P.: Periodic corrections in secular milankovitch theory applied to passive debris removal. In: International Symposium on Space Flight Dynamics (2019)

  • Kholshevnikov, K.V., Vassiliev, N.N.: On the distance function between two Keplerian elliptic orbits. Celest. Mech. Dyn. Astron. 75(2), 75–83 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  • Lawden, D.F.: Optimal Trajectories for Space Navigation, pp. 77–89. Butterworths, London (1963)

    MATH  Google Scholar 

  • Liu, X., Baoyin, H., Ma, X.: Five special types of orbits around Mars. J. Guidance Control Dyn. 33(4), 1294–1301 (2010)

    Article  ADS  Google Scholar 

  • Merson, R.H.: The motion of a satellite in an axi-symmetric gravitation field. Geophys. J. R. Astron. Soc. 17–52 (1961)

  • Nie, T., Gurfil, P.: Lunar frozen orbits revisited. Celest. Mech. Dyn. Astron. 130(10), 1–35 (2018)

    Article  MathSciNet  Google Scholar 

  • Nie, T., Gurfil, P., Zhang, S.: Analytical conditions for bounded mean intersatellite distances in the \(J_2\) problem. J. Guidance Control Dyn. 41(10), 2144–2162 (2018)

    Article  ADS  Google Scholar 

  • Schaub, H., Alfriend, K.T.: \(J_2\) invariant relative orbits for formation flying. Celest. Mech. Dyn. Astron. 79(2), 1200–1209 (2001)

    Article  Google Scholar 

  • Schweighart, S.A., Sedwick, R.J.: High-fidelity linearized \(J_2\) model for satellite formation flight. J. Guidance Control Dyn. 25(6), 1073–1080 (2002)

    Article  ADS  Google Scholar 

  • Sedwick, R.J., Miller, D.W., Kong, E.M.C.: Mitigation of differential perturbations in formation flying satellite clusters. J. Astronaut. Sci. 47(3&4), 309–331 (1999)

  • Vallado, D.A.: Fundamentals of Astrodynamics and Applications. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  • Xu, M., Wang, Y., Xu, S.: On the existence of \(J_2\) invariant relative orbits from the dynamical system point of view. Celest. Mech. Dyn. Astron. 112(4), 427–444 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Marcus.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest associated with the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned}&A_{\varOmega } = 84 (3 e_\mathrm{f}^{2} + 2) a^{2} \sin {i} J_{2} - 54 (15 \sin ^{2}{i} + 4) a e_\mathrm{f} r_\mathrm{eq} J_{3} \\&\qquad \quad + 165 (42 e_\mathrm{f}^{2} \sin ^{2}{i} - 23 e_\mathrm{f}^{2} + 7 \sin ^{2}{i} - 4) r_\mathrm{eq}^{2} \sin {i} J_{4}\\&E_{\varOmega } = 12 (3 e_\mathrm{f}^{2} - 8) a^{2} e_\mathrm{f} \sin {i} J_{2} + 6 (15 \sin ^{2}{i} - 4) a r_\mathrm{eq} J_{3} \\&\qquad \quad + (636 e_\mathrm{f}^{2} \sin ^{2}{i} - 345 e_\mathrm{f}^{2} - 16 \sin ^{2}{i} + 750) e_\mathrm{f} r_\mathrm{eq}^{2} \sin {i} J_{4} \\ {}&I_{\varOmega } = 12 (3 e_\mathrm{f}^{2} + 2) a^{2} \sin {i} J_{2} + 6 (15 - 30 \sin ^{2}{i} + 4 \csc ^{2}{i}) a e_\mathrm{f} r_\mathrm{eq} J_{3} \\ {}&\qquad \quad + 15 (126 e_\mathrm{f}^{2} \sin ^{3}{i} - 107 e_\mathrm{f}^{2} \sin {i} + 21 \sin ^{3}{i} - 18 \sin {i}) r_\mathrm{eq}^{2} J_{4} \\ {}&A_{\omega } = 84 (5 \sin ^{2}{i} - e_\mathrm{f}^{2} - 4) a^{2} e_\mathrm{f} J_{2} \\ {}&\qquad \quad + 54 (15 e_\mathrm{f}^{2} \sin {i}- 10 e_\mathrm{f}^{2} \sin ^{3}{i} - 4 e_\mathrm{f}^{2} \csc {i} - 5 \sin ^{3}{i} + 4 \sin {i}) a r_\mathrm{eq} J_{3} \\ {}&\qquad \quad + 165 (21 e_\mathrm{f}^{2} \sin ^{4}{i} - 34 \sin ^{2}{i} - 42 e_\mathrm{f}^{2} \sin ^{2}{i} + 19 e_\mathrm{f}^{2} + 28 \sin ^{4}{i} + 8) e_\mathrm{f} r_\mathrm{eq}^{2} J_{4} \\ {}&E_{\omega } = 12 (6 - 5 \sin ^{2}{i} - e_\mathrm{f}^{2}) a^{2} e_\mathrm{f}^{3} J_{2} \\ {}&\qquad \quad + 6 (20 e_\mathrm{f}^{2} \sin ^{3}{i} - 23 e_\mathrm{f}^{2} \sin {i} + 4 e_\mathrm{f}^{2} \csc {i} - 5 \sin ^{3}{i} + 4 \sin {i}) a r_\mathrm{eq} J_{3} \\ {}&\qquad \quad + 15 (21 e_\mathrm{f}^{2} \sin ^{4}{i} - 42 e_\mathrm{f}^{2} \sin ^{2}{i} + 19 e_\mathrm{f}^{2} - 70 \sin ^{4}{i} + 118 \sin ^{2}{i} - 46) e_\mathrm{f}^{3} r_\mathrm{eq}^{2} J_{4} \\ {}&I_{\omega } = 60 a^{2} e_\mathrm{f} \sin ^3{i} J_{2} \\ {}&\qquad \quad + 3 (4 e_\mathrm{f}^{2} + 15 e_\mathrm{f}^{2} \sin ^{2}{i} + 4 \sin ^{2}{i} - 30 e_\mathrm{f}^{2} \sin ^{4}{i} - 15 \sin ^{4}{i}) a r_\mathrm{eq} J_{3} \\ {}&\qquad \quad + 30 (28 \sin ^{3}{i} + 21 e_\mathrm{f}^{2} \sin ^{3}{i} - 21 e_\mathrm{f}^{2} \sin {i} - 17 \sin {i}) e_\mathrm{f} r_\mathrm{eq}^{2} \sin ^2{i} J_{4} \\ {}&A_M = -96 a^{4} e_\mathrm{f} + 168 (12 e_\mathrm{f}^{2} \sin ^{2}{i} - 8 e_\mathrm{f}^{2} + 3 \sin ^{2}{i} - 2) a^{2} e_\mathrm{f} r_\mathrm{eq}^{2} J_{2} \\ {}&\qquad \quad + 108 (36 e_\mathrm{f}^{2} - 45 e_\mathrm{f}^{2} \sin ^{2}{i} + 5 \sin ^{2}{i} - 4) a r_\mathrm{eq}^{3} \sin {i} J_{3} \\ {}&\qquad \quad + 165 (252 e_\mathrm{f}^{2} \sin ^{4}{i} - 276 e_\mathrm{f}^{2} \sin ^{2}{i} + 48 e_\mathrm{f}^{2} - 7 \sin ^{4}{i} + 6 \sin ^{2}{i}) e_\mathrm{f} r_\mathrm{eq}^{4} J_{4} \\ {}&E_M = 48 (2 - 3 \sin ^{2}{i}) a^{2} e_\mathrm{f}^{3} J_{2} + 3 (45 e_\mathrm{f}^{2} \sin ^{2}{i} - 36 e_\mathrm{f}^{2} + 5 \sin ^{2}{i} - 4) a r_\mathrm{eq} \sin {i} J_{3} \\ {}&\qquad \quad - 90 (21 \sin ^{4}{i} + 23 \sin ^{2}{i} - 4) e_\mathrm{f}^{3} r_\mathrm{eq}^{2} J_{4} \\ {}&I_M = -36 (4 e_\mathrm{f}^{2} + 1) a^{2} e_\mathrm{f} \sin {i} J_{2} + 3(135 e_\mathrm{f}^{2} \sin ^{2}{i} - 36 e_\mathrm{f}^{2} - 15 \sin ^{2}{i} + 4) a r_\mathrm{eq} J_{3} \\ {}&\qquad \quad + 15 (138 e_\mathrm{f}^{2} - 252 e_\mathrm{f}^{2} \sin ^{2}{i} + 7 \sin ^{2}{i} - 3) e_\mathrm{f} r_\mathrm{eq}^{2} \sin {i} J_{4}&\end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcus, G., Gurfil, P. Bounded Martian satellite relative motion. Celest Mech Dyn Astr 133, 28 (2021). https://doi.org/10.1007/s10569-021-10025-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-021-10025-9

Keywords

Navigation