Skip to main content
Log in

Resonance tongues in the linear Sitnikov equation

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we deal with a Hill’s equation, depending on two parameters \(e\in [0,1)\) and \(\varLambda >0\), that has applications to some problems in Celestial Mechanics of the Sitnikov type. Due to the nonlinearity of the eccentricity parameter e and the coexistence problem, the stability diagram in the \((e,\varLambda )\)-plane presents unusual resonance tongues emerging from points \((0,(n/2)^2),\ n=1,2,\ldots \) The tongues bounded by curves of eigenvalues corresponding to \(2\pi \)-periodic solutions collapse into a single curve of coexistence (for which there exist two independent \(2\pi \)-periodic eigenfunctions), whereas the remaining tongues have no pockets and are very thin. Unlike most of the literature related to resonance tongues and Sitnikov-type problems, the study of the tongues is made from a global point of view in the whole range of \(e\in [0,1)\). Indeed, an interesting behavior of the tongues is found: almost all of them concentrate in a small \(\varLambda \)-interval [1, 9 / 8] as \(e\rightarrow 1^-\). We apply the stability diagram of our equation to determine the regions for which the equilibrium of a Sitnikov \((N+1)\)-body problem is stable in the sense of Lyapunov and the regions having symmetric periodic solutions with a given number of zeros. We also study the Lyapunov stability of the equilibrium in the center of mass of a curved Sitnikov problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. From now on with \(4\pi \)-periodic, we mean also not \(2\pi \)-periodic, unless otherwise indicated.

  2. In this subsection, we do not require the period to be minimum.

References

  • Arnol’d, V.I.: Remarks on the perturbation theory for problems of Mathieu type. Rus. Math. Surv. 38, 215–233 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Bakker, L., Simmons, S.: A separating surface for Sitnikov-like \(n+1\)-body problems. J. Differ. Equ. 258, 3063–3087 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Belbruno, E., Libre, J., Ollé, M.: On the families of periodic orbits which bifurcate from the circular Sitnikov motions. Celest. Mech. Dyn. Astron. 60, 99–129 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bountis, T., Papadakis, K.E.: The stability of the vertical motion in the N-body circular Sitnikov problem. Celest. Mech. Dyn. Astron. 104, 205–225 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Broer, H.W., Simó, C.: Hill’s equation with quasi-periodic forcing: resonance tongues, instability pockets and global phenomena. Bol. Soc. Brasil. Math. 29, 253–293 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Broer, H.W., Levi, M.: Geometrical aspects of stability theory of Hill’s equations. Arch. Rat. Mech. Anal. 131, 225–240 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Brown, B.M., Eastham, M.S.P., Schmidt, K.M.: Periodic Differential Operators. Advances and Applications. Birkhäuser, Basel (2013)

    Book  Google Scholar 

  • Celletti, A.: Analysis of resonances in the spin-orbit problem in celestial mechanics: the synchronous resonance (part I). J. Appl. Math. Phys. 41, 174–204 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Celletti, A., Chierchia, L.: Measures of basins of attraction in spin–orbit dynamics. Celest. Mech. Dyn. Astron. 101, 159–170 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Coddington, E., Levinson, N.: Theory of Ordinary Differential Equations. Mc Graw Hill, New York (1955)

    MATH  Google Scholar 

  • Dias L.B. and Cabral H.E.: Parametric stability in a Sitnikov-like restricted P-body problem. J. Dyn. Diff. Equ. (2016). https://doi.org/10.1007/s10884-016-9533-7

  • Franco-Pérez, L., Gidea, M., Levi, M., Pérez-Chavela, E.: Stability interchanges in a curved Sitnikov problem. Nonlinearity 29, 1056–1079 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gan, S., Zhang, M.: Resonance pockets of Hill’s equations with two-step potentials. SIAM J. Math. Anal. 32, 651–664 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Goldreich, P., Peale, S.: Spin-orbit coupling in the solar system. Astron J. 71, 425–38 (1966)

    Article  ADS  Google Scholar 

  • Havil, J.: Gamma. Exploring Euler’s Constant. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  • Kamke, E.: A new proof of Sturm’s comparison theorems. Amer. Math. Monthly 46, 417–421 (1939)

    MathSciNet  MATH  Google Scholar 

  • Krantz, S.G., Parks, H.R.: The Implicit Function Theorem: History, Theory and Applications. Birkhäuser, Basel (2003)

    Book  MATH  Google Scholar 

  • Levy, D.M., Keller, J.B.: Instability intervals of Hill’s equation. Comm. Pure Appl. Math. 16, 469–479 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  • Llibre, J., Ortega, R.: On the families of periodic orbits of the Sitnikov problem. SIAM J. Appl. Dyn. Syst. 7, 561–576 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Magnus, W., Winkler, S.: Hill’s equation. Dover, New York (1979)

    MATH  Google Scholar 

  • Martínez Alfaro, J., Chiralt, C.: Invariant rotational curves in Sitnikov’s Problem. Celest. Mech. Dyn. Astron. 55, 351–367 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Moser, J.: Stable and random motions in dynamical systems. Annals of Math Studies 77. Princeton University Press, New Jersey (1973)

    Google Scholar 

  • Núñez, D., Ortega, R.: Parabolic fixed points and stability criteria for non-linear Hill’s equation. Zeitschrift für Angewandte Mathematik und Physik ZAMP 51, 890–911 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ortega, R.: The stability of the equilibrium of a nonlinear Hill’s equation. SIAM J. Math. Anal. 25, 1393–1401 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Ortega, R.: The stability of the equilibrium: a search for the right approximation. In: Ferrera, J., López-Gómez, J., Ruiz del Portal, F.R. (eds.) Ten Mathematical Essays on Approximation in Analysis and Topology, pp. 215–234. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  • Ortega, R.: Symmetric periodic solutions in the Sitnikov problem. Arch. Math. 107, 405–412 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Ortega, R., Rivera, A.: Global bifurcations from the center of mass in the Sitnikov problem. Discrete Contin. Dyn. Syst. Ser. B 14, 719–732 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Pustylnikov, L.D.: On certain final motions in the \(n\)-body problem. J. Appl. Math. Mech. 54, 272–274 (1990)

    Article  MathSciNet  Google Scholar 

  • Rivera, A.: Periodic Solutions in the generalized Sitnikov \((N+1)\)-body problem. SIAM J. Appl. Dyn. Syst. 12, 1515–1540 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Sidorenko, V.V.: On the circular Sitnikov problem: the alternation of stability and instability in the family of vertical motions. Celest. Mech. Dyn. Astron. 109, 367–384 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Suraj, M.S., Hassan, M.R.: Sitnikov restricted four-body problem with radiation pressure. Astrophys. Space Sci. 349, 705–716 (2013)

    Article  ADS  Google Scholar 

  • Van der Pol, B., Strutt, M.J.O.: On the stability of the solutions of Mathieu’s equation. London Edinburgh Dublin Phil. Mag. J. Sci. 5(27), 18–38 (1928)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

I thank Professor Rafael Ortega for guiding me in the development of this paper and for his valuable corrections that helped me to clarify my initial approach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Misquero.

Additional information

This research was supported by the doctoral grant FPU15/02827 awarded by Spanish Ministry of Education, Culture and Sport (MECD) and the project MTM2014-52232-P awarded by Spanish Ministry of Economy, Industry and Competitiveness (MINECO).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misquero, M. Resonance tongues in the linear Sitnikov equation. Celest Mech Dyn Astr 130, 30 (2018). https://doi.org/10.1007/s10569-018-9825-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-018-9825-9

Keywords

Navigation