Skip to main content
Log in

Existence and orbital stability/instability of standing waves with prescribed mass for the \(L^{2}\)-supercritical NLS in bounded domains and exterior domains

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Relying on bifurcation type arguments, we obtain threshold results for the existence, non-existence and multiplicity of positive solutions with prescribed \(L^{2}\) norm for the semi-linear elliptic equation in bounded domains:

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u - f(x,u) = \lambda u, x \in \Omega , \\ u_{|\partial \Omega } = 0, \end{array} \right. \end{aligned}$$

and we do not assume that f is autonomous. Moreover, we provide a lower bound for the threshold. For almost every \(L^{2}\) mass in the existence range, there exist one orbitally stable standing wave and one unstable standing wave associated to these positive solutions. We also study the existence of prescribed norm solutions in exterior domains and orbitally unstable standing waves for almost every \(L^{2}\) mass in the existence range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

My manuscript has no associate data.

References

  1. Agrawal, G.P.: Nonlinear Fiber Optics, 5th edn. Academic, Oxford (2013)

    MATH  Google Scholar 

  2. Anane, A.: Simplicité et isolation de la première valeur propre du \(p\)-Laplacien avec poids. C. R. Acad. Sci. Paris 305, 725–728 (1987)

    MathSciNet  MATH  Google Scholar 

  3. Adami, R., Noja, D., Visciglia, N.: Constrained energy minimization and ground states for NLS with point defects. Discrete Contin. Dyn. Syst. Ser. B 18(5), 1155–1188 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Aftalion, A., Pacella, F.: Uniqueness and nondegeneracy for some nonlinear elliptic problems in a ball. J. Differ. Equ. 195(2), 380–397 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Bahri, A., Lions, P.L.: Solutions of superlinear elliptic equations and their Morse indices. Commun. Pure Appl. Math. 45, 1205–1215 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations, I: existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

    MathSciNet  MATH  Google Scholar 

  7. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Funct. Anal. 272(12), 4998–5037 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Bartsch, T., Parnet, M.: Nonlinear Schrödinger equations near an infinite well potential. Calc. Var. Partial Differ. Equ. 51(1–2), 363–379 (2014)

    MATH  Google Scholar 

  9. Bartsch, T., de Valeriola, S.: Normalized solutions of nonlinear Schrödinger equations. Arch. Math. 100(1), 75–83 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  11. Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)

    MATH  Google Scholar 

  12. Dancer, E.N.: The effect of the domain shape on the number of positive solutions of certain nonlinear equations. J. Differ. Equ. 74, 120–156 (1988)

    MathSciNet  MATH  Google Scholar 

  13. Damascelli, L., Grossi, M., Pacella, F.: Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle. Ann. Inst. H. Poincaré 16, 631–652 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Dovetta, S., Serra, E., Tilli, P.: Action versus energy ground states in nonlinear Schrödinger equations. Math. Ann. 385, 1545–1576 (2023)

    MathSciNet  MATH  Google Scholar 

  15. Esteban, M.J.: Nonsymmetric ground states of symmetric variational problems. Commun. Pure Appl. Math. 44, 259–274 (1991)

    MathSciNet  MATH  Google Scholar 

  16. Fibich, G., Merle, F.: Self-focusing on bounded domains. Phys. D 155(1–2), 132–158 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Felmer, P., Martínez, S., Tanaka, K.: Uniqueness of radially symmetric positive solutions for \(-\Delta u + u = |u|^{p}\) in an annulus. J. Differ. Equ. 245(5), 1198–1209 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Fukuizumi, R., Selem, F.H., Kikuchi, H.: Stationary problem related to the nonlinear Schrödinger equation on the unit ball. Nonlinearity 25(8), 2271–2301 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Grossi, M.: A uniqueness result for a semilinear elliptic equation in symmetric domains. Adv. Differ. Equ. 5, 193–212 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209–243 (1979)

    MathSciNet  MATH  Google Scholar 

  21. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry, I. J. Funct. Anal. 74(1), 160–197 (1987)

    MathSciNet  MATH  Google Scholar 

  22. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28(10), 1633–1659 (1997)

  23. Hajaiej, H., Song, L.J.: A General and Unified Method to prove the Uniqueness of Ground State Solutions and the Existence/Non-existence, and Multiplicity of Normalized Solutions with applications to various NLS. arXiv: 2208.11862

  24. Hajaiej, H., Song, L.J.: Strict Monotonicity of the global branch of solutions and Uniqueness of the corresponding normalized ground states for various classes of PDEs: Two general Methods with some examples. arXiv:2302.09681

  25. Jeanjean, L.: Some continuation properties via minimax arguments. Electron. J. Differ. Equ. 48, 10 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Jones, C.K.R.T.: Instability of standing waves for nonlinear Schrödinger-type equations. Ergod. Theory Dyn. Syst. 8(8*), 119–138 (1988)

    MATH  Google Scholar 

  27. Korman, P.: On uniqueness of positive solutions for a class of semilinear equations. Discrete Contin. Dyn. Syst. 8(4), 865–871 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Kwong, M.K., Li, Y.: Uniqueness of radial solutions of semilinear elliptic equations. Trans. Am. Math. Soc. 333(1), 339–363 (1992)

    MathSciNet  MATH  Google Scholar 

  29. Kabeya, Y., Tanaka, K.: Uniqueness of positive radial solutions of semilinear elliptic equations in \(\mathbb{R} ^{N}\) and Séré’s non-degeneracy condition. Commun. Partial Differ. Equ. 24, 563–598 (1999)

    MATH  Google Scholar 

  30. Lin, C.S.: Uniqueness of least energy solutions to a semilinear elliptic equation in \(\mathbb{R} ^{2}\). Manuscr. Math. 84, 13–19 (1994)

    MATH  Google Scholar 

  31. Lions, J.L.: Problèmes aux Limites Dans les Équations aux Dérivés partielles. Presses de Iąŕuniv, de Montréal (1962)

  32. Mckenna, P.J., Pacella, F., Plum, M., Roth, D.: A uniqueness result for a semilinear elliptic problem: a computer-assisted proof. J. Differ. Equ. 247(7), 2140–2162 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Ni, W.M., Nussbaum, R.D.: Uniqueness and nonuniqueness for positive radial solutions of \(\Delta u + f(u, r) = 0\). Commun. Pure Appl. Math. 38, 69–108 (1985)

    MathSciNet  MATH  Google Scholar 

  34. Noris, B., Tavares, H., Verzini, G.: Existence and orbital stability of the ground states with prescribed mass for the \(L^{2}\)-critical and supercritical NLS on bounded domains. Anal. PDE 7(8), 1807–1838 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Ortega, R., Verzini, G.: A variational method for the existence of bounded solutions of a sublinear forced oscillator. Proc. Lond. Math. Soc. 88(3), 775–795 (2004)

    MathSciNet  MATH  Google Scholar 

  36. Pino, M., Manásevich, R.F.: Global bifurcation from the eigenvalues of the p-Laplacian. J. Differ. Equ. 92(2), 226–251 (1991)

    MathSciNet  MATH  Google Scholar 

  37. Pucci, P., Serrin, J.: A general variational identity. Indiana Univ. Math. J. 35(3), 681–703 (1986)

    MathSciNet  MATH  Google Scholar 

  38. Pierotti, D., Verzini, G.: Normalized bound states for the nonlinear Schrödinger equation in bounded domains. Calc. Var. Partial Differ. Equ. 56(5), 27 (2017). (Art. 133)

    MATH  Google Scholar 

  39. Song, L.J., Hajaiej, H.: Threshold for existence, non-existence and Multiplicity of positive solutions with prescribed mass for an NLS with a pure power nonlinearity in the exterior of a ball. arXiv:2209.06665

  40. Stuart, C.A.: Bifurcation for variational problems when the linearisation has no egenvalues. J. Funct. Anal. 38(2), 169–187 (1980)

    MATH  Google Scholar 

  41. Stuart, C.A.: Bifurcation from the continuous spectrum in \(L^{2}\)-theory of elliptic equations on \(\mathbb{R}^{N}\). In: Recent Methods in Nonlinear Analysis and Applications, Liguori, Napoli (1981)

  42. Stuart, C.A.: Bifurcation from the essential spectrum for some noncompact nonlinearities. Math. Methods Appl. Sci. 11(4), 525–542 (1989)

    MathSciNet  MATH  Google Scholar 

  43. Stuart, C.A.: Bifurcation for Dirichlet problems without eigenvalues. Proc. Lond. Math. Soc. 45(3), 169–192 (1982)

    MathSciNet  MATH  Google Scholar 

  44. Shatah, J., Strauss, W.: Instability of nonlinear bound states. Commun. Math. Phys. 100(2), 173–190 (1985)

    MathSciNet  MATH  Google Scholar 

  45. Shioji, N., Watanabe, K.: A generalized Pohoaev identity and uniqueness of positive radial solutions of \(\Delta u + g(r)u + h(r)u^{p} = 0\). J. Differ. Equ. 255, 4448–4475 (2013)

    MATH  Google Scholar 

  46. Song, L.J.: Properties of the least action level, bifurcation phenomena and the existence of normalized solutions for a family of semi-linear elliptic equations without the hypothesis of autonomy. J. Differential Equations 315, 179–199 (2022)

    MathSciNet  MATH  Google Scholar 

  47. Song, L.J., Hajaiej, H.: A New Method to prove the Existence, Non-existence, Multiplicity, Uniqueness, and Orbital Stability/Instability of standing waves for NLS with partial confinement. arXiv: 2211.10058

  48. Weinstein, M.I.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math. 39(1), 51–67 (1986)

    MathSciNet  MATH  Google Scholar 

  49. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87(4), 567–576 (1983)

    MATH  Google Scholar 

  50. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    MATH  Google Scholar 

  51. Yanagida, E.: Uniqueness of positive radial solutions of \(\Delta u + f(u, |x|) = 0\). Nonlinear Anal. 19(12), 1143–1154 (1992)

    MathSciNet  MATH  Google Scholar 

  52. Yanagida, E.: Uniqueness of positive radial solutions of \(\Delta u + g(r)u + h(r)u^{p} = 0\) in \(\mathbb{R} ^{N}\). Arch. Ration. Mech. Anal. 115, 257–274 (1991)

    MATH  Google Scholar 

  53. Zhang, L.Q.: Uniqueness of positive solutions of \(\Delta u + u + u^{p} = 0\) in a ball. Commun. Partial Differ. Equ. 17(7–8), 1141–1164 (1992)

    MATH  Google Scholar 

  54. Zou, H.: On the effect of the domain geometry on the uniqueness of positive solutions of \(\Delta u + u^{p} = 0\). Ann. Sc. Norm. Super. Pisa 3, 343–356 (1994)

    MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank C. Li and S.J. Li for fruitful discussions and constant support during the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linjie Song.

Additional information

Communicated by P. H. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is supported by CEMS.

A Appendix

A Appendix

In this appendix, we show some details of the calculations in Remark 6.3 (ii). As a byproduct, we prove that \(u_{\lambda }(0) > (-\frac{2p}{2N - (N-2)p}\lambda )^{\frac{1}{p-2}}\) in this case. Applying [4, Theorem 1.5] on (5.1) where \(\lambda \le 0\), \(N \ge 2\), then any solution of (5.1) is nondegenerate if the following assumption holds:

(A) G(r) is either nonnegative in (0, R) or positive in \((0,r_{0})\) and negative in \((r_{0},R)\) for some \(r_{0} \in (0, R)\) where \(u(r) = u(|x|)\) is a positive solution of

$$\begin{aligned} -u''(r)-\frac{N-1}{r}u'(r) = \lambda u(r) + \frac{1}{(1 + r^{s})^{k}}u(r)^{p-1}, u'(0) = 0, u(R) = 0 \end{aligned}$$

and

$$\begin{aligned} G(r) = \lambda u(r)^{2} + \left[ \frac{2N-(N-2)p-2ks}{2p}\frac{1}{(1 + r^{s})^{k}} + \frac{ks}{p(1 + r^{s})^{k+1}}\right] u(r)^{p}. \end{aligned}$$

Theorem A.1

If \(\lambda \le 0\), \(N \ge 2\), \((N-2)p - 2(N-ks) \ge 0\), then any solution of (5.1) is nondegenerate.

Proof

We verify the assumption (A). Rewrite \(G(r) = u(r)^{2}\tilde{G}(r)\) where

$$\begin{aligned} \tilde{G}(r)= & {} g(r)h(r) + \lambda , \\ g(r)= & {} \frac{2N-(N-2)p-2ks}{2p}r^{s} + \frac{2N-(N-2)p}{2p}, \\ h(r)= & {} \frac{u(r)^{p-2}}{(1 + r^{s})^{k+1}}. \end{aligned}$$

\(u(r) > 0\) and \(u'(r) < 0\) in (0, R), thus \(h(r) > 0\) is decreasing in (0, R). Since \((N-2)p - 2(N-ks) \ge 0\) and \((N-2)p < 2N\), g(r) is nonincreasing in (0, R) and \(g(0) > 0\).

Case 1: \(g(R) \ge 0\).

In this case, \(g(r) > 0\) in (0, R) and \(\tilde{G}(r)\) is decreasing in (0, R). Since \(\tilde{G}(R) = \lambda \le 0\), if \(\tilde{G}(0) > 0\), \(\tilde{G}(r)\) is positive in (0, R) when \(\lambda = 0\) or positive in \((0,r_{0})\) and negative in \((r_{0},R)\) for some \(r_{0} < R\) when \(\lambda < 0\) and if \(\tilde{G}(0) \le 0\), \(\tilde{G}(r) \le 0\). Since \(u(r)^{2} > 0\), G(r) has the same sign as \(\tilde{G}(r)\) in (0, R).

Case 2: \(g(R) < 0\).

In this case, there exists a unique \(r^{*} \in (0, R)\) such that \(g(r^{*}) = 0\), \(g(r) > 0\) in \((0, r^{*})\) and \(g(r) < 0\) in \((r^{*}, R)\). \(\tilde{G}(r)\) is decreasing in \((0,r^{*})\). Since \(\tilde{G}(r^{*}) = \lambda \le 0\), if \(\tilde{G}(0) > 0\), \(\tilde{G}(r)\) is positive in \((0, r^{*})\) when \(\lambda = 0\) or positive in \((0, r_{0})\) and negative in \((r_{0}, r^{*})\) for some \(r_{0} < r^{*}\) when \(\lambda < 0\) and if \(\tilde{G}(0) \le 0\), \(\tilde{G}(r) \le 0\) in \((0,r^{*})\). Moreover, \(\tilde{G}(r) \le \lambda \le 0\) in \([r^{*}, R)\). Thus \(\tilde{G}(r)\) is either positive in \((0,r_{0})\) and negative in \((r_{0},R)\) for some \(r_{0} < R\) or \(\tilde{G}(r) \le 0\) in (0, R). Since \(u(r)^{2} > 0\), G(r) has the same sign as \(\tilde{G}(r)\).

Finally, we show that it is impossible that \(G(r) \le 0\) in (0, R). Arguing by contradiction, we assume that \(G(r) \le 0\) in (0, R). Define

$$\begin{aligned} \phi (r) = \frac{N-2}{2}r^{N-1}u(r)u'(r) + \frac{1}{2}r^{N}u'(r)^{2} + \frac{\lambda }{2}r^{N}u(r)^{2} + \frac{r^{N}}{p(1 + r^{s})^{k}}u(r)^{p}. \end{aligned}$$

Since \(-u''(r)-\frac{N-1}{r}u'(r) = \lambda u(r) + \frac{1}{(1 + r^{s})^{k}}u(r)^{p}\),

$$\begin{aligned} \phi '(r)= & {} \frac{(N-1)(N-2)}{2}r^{N-2}u(r)u'(r) + \frac{N-2}{2}r^{N-1}u'(r)^{2} + \frac{N-2}{2}r^{N-1}u'(r)u''(r) \nonumber \\{} & {} + \frac{N}{2}r^{N-1}u'(r)^{2} + r^{N}u'(r)u''(r) + \frac{N\lambda }{2}r^{N-1}u(r)^{2} + \lambda r^{N}u(r)u'(r) \nonumber \\{} & {} + \frac{Nr^{N-1}}{p(1 + r^{s})^{k}}u(r)^{p} - \frac{ksr^{N+s-1}}{p(1 + r^{s})^{k+1}}u(r)^{p} + \frac{r^{N}}{(1 + r^{s})^{k}}u(r)^{p-1}u'(r) \nonumber \\= & {} r^{N-1}G(r). \end{aligned}$$
(A.1)

Thus \(\phi (r)\) is nonincreasing in (0, R), contradicting \(\phi (0) = 0\) and \(\phi (R) = \frac{R^{N}}{2}u'(R)^{2} > 0\). The proof is completed. \(\square \)

Corollary A.2

If \(N \ge 2\), \((N-2)p - 2(N-ks) \ge 0\), \(u_{\lambda }\) is a positive solution of (5.1) for some \(\lambda \le 0\), then \(u_{\lambda }(0) > (-\frac{2p}{2N - (N-2)p}\lambda )^{\frac{1}{p-2}}\).

Proof

From the proof of Theorem A.1, \(\tilde{G}(0) > 0\) since it is impossible that \(\tilde{G}(r) \le 0\) in (0, R). Notice that

$$\begin{aligned} \tilde{G}(0) = \frac{2N-(N-2)p}{2p}u_{\lambda }(0)^{p-2} + \lambda > 0, \end{aligned}$$

implying that

$$\begin{aligned} u_{\lambda }(0) > \left( -\frac{2p}{2N - (N-2)p}\lambda \right) ^{\frac{1}{p-2}}. \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L. Existence and orbital stability/instability of standing waves with prescribed mass for the \(L^{2}\)-supercritical NLS in bounded domains and exterior domains. Calc. Var. 62, 176 (2023). https://doi.org/10.1007/s00526-023-02510-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-023-02510-w

Mathematics Subject Classification

Navigation