Skip to main content

Advertisement

Log in

SEW2871 attenuates ANIT-induced hepatotoxicity by protecting liver barrier function via sphingosine 1-phosphate receptor-1–mediated AMPK signaling pathway

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Cholestatic liver injury, a group of diseases characterized with dysregulated bile acid (BA) homeostasis, was partly resulted from BA circulation disorders, which is commonly associated with the damage of hepatocyte barrier function. However, the underlying hepatocyte barrier-protective molecular mechanisms of cholestatic liver injury remain poorly understood. Interestingly, recent studies have shown that sphingosine-1-phosphate (S1P) participated in the process of cholestasis by activating its G protein–coupled receptors S1PRs, regaining the integrity of hepatocyte tight junctions (TJs). Here, we showed that SEW2871, a selective agonist of sphingosine-1-phosphate receptor 1(S1PR1), alleviated ANIT–induced TJs damage in 3D-cultured mice primary hepatocytes. Molecular mechanism studies indicated that AMPK signaling pathways was involved in TJs protection of SEW2871 in ANIT-induced hepatobiliary barrier function deficiency. AMPK antagonist compound C (CC) and agonist AICAR were all used to further identify the important role of AMPK signaling pathway in SEW2871’s TJs protection of ANIT-treated mice primary hepatocytes. The in vivo data showed that SEW2871 ameliorated ANIT-induced cholestatic hepatotoxicity. Further protection mechanism research demonstrated that SEW2871 not only regained hepatocyte TJs by the upregulated S1PR1 via AMPK signaling pathway, but also recovered hepatobiliary barrier function deficiency, which was verified by the restored BA homeostasis by using of high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). These results revealed that the increased expression of S1PR1 induced by SEW2871 could ameliorate ANIT–induced cholestatic liver injury through improving liver barrier function via AMPK signaling and subsequently reversed the disrupted BA homeostasis. Our study provided strong evidence that S1PR1 may be a promising therapeutic approach for treating intrahepatic cholestatic liver injury.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANIT:

α-Naphthylisothiocyanate

TJs:

Tight junctions

ZO-1:

Zonula occludens 1

S1P:

Sphingosine-1-phosphate

S1PR1:

sphingosine-1-phosphate receptor 1

AMPK:

AMP-activated protein kinase

LKB1:

Liver kinase B1

ERK1/2:

Extracellular signal-regulated kinases

CC:

Compound C

MPO:

Myeloperoxidase

IL-6:

Interleukin-6

IL-1β:

Interleukin-1β

TNF-α:

Tumor necrosis factor-α

SCMHs:

Sandwich cultured primary mice hepatocytes

LC-MS/MS:

High-performance liquid chromatography-tandem mass spectrometry

PCA:

Principal component analysis

G-BAs:

Glycine-conjugated bile acids

T-BAs:

Taurine conjugated bile acids

UDCA:

Ursodeoxycholic acid

HDCA:

Hyodeoxycholic acid

CDCA:

Chenodeoxycholic acid

DCA:

Deoxycholic acid

CA:

Cholic acid

Beta-MCA:

Beta-muricholic acid

LCA:

Lithocholic acid

TUDCA:

Tauroursodeoxycholic acid

THDCA:

Taurohyodeoxycholic acid

TCDCA:

Taurochenodeoxycholic acid

TDCA:

Taurodeoxycholic acid

TCA:

Taurocholic acid

TLCA:

Taurolithocholic acid

GUDCA:

Glycoursodeoxycholic acid

GHDCA:

Glycohyodeoxycholic acid

GCDCA:

Glycochenodeoxycholic acid

GDCA:

Glycodeoxycholic acid

GCA:

Glycocholic acid

GLCA:

Glycolithocholic acid

dhCA:

Dehydrocholic acid

NorUDCA:

24-norursodeoxycholic acid

OCA:

Obecholic acid

EE:

17α-Ethinylestradiol

References

  • Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: pathophysiological basis for therapy. J Hepatol. 2020;72:558–77.

    Article  CAS  PubMed  Google Scholar 

  • Assimakopoulos SF, Tsamandas AC, Louvros E, Vagianos CE, Nikolopoulou VN, Thomopoulos KC, et al. Intestinal epithelial cell proliferation, apoptosis and expression of tight junction proteins in patients with obstructive jaundice. Eur J Clin Investig. 2011;41:117–25.

    Article  Google Scholar 

  • Aw DK, Sinha RA, Xie SY, Yen PM. Differential AMPK phosphorylation by glucagon and metformin regulates insulin signaling in human hepatic cells. Biochem Biophys Res Commun. 2014;447:569–73.

    Article  CAS  PubMed  Google Scholar 

  • Berkes J, Viswanathan VK, Savkovic SD, Hecht G. Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut. 2003;52:439–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burg N, Swendeman S, Worgall S, Hla T, Salmon JE. Sphingosine 1-phosphate receptor 1 signaling maintains endothelial cell barrier function and protects against immune complex-induced vascular injury. Arthritis Rheumatol. 2018;70:1879–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology. 2017;152:1679–94.

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Zhang C, Wang H, Xu J, Duan ZH, Zhang Y, et al. Altered integrity and decreased expression of hepatocyte tight junctions in rifampicin-induced cholestasis in mice. Toxicol Appl Pharmacol. 2009;240:26–36.

    Article  CAS  PubMed  Google Scholar 

  • Djouder N, Tuerk RD, Suter M, Salvioni P, Thali RF, Scholz R, et al. PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis. EMBO J. 2010;29:469–81.

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Wang H, Zhao J, Sun J, Zhang T, Zuo L, et al. SEW2871 protects from experimental colitis through reduced epithelial cell apoptosis and improved barrier function in interleukin-10 gene-deficient mice. Immunol Res. 2015;61:303–11.

    Article  CAS  PubMed  Google Scholar 

  • Dragsten PR, Handler JS, Blumenthal R. Fluorescent membrane probes and the mechanism of maintenance of cellular asymmetry in epithelia. Fed Proc. 1982;41:48–53.

    CAS  PubMed  Google Scholar 

  • Eloranta JJ, Kullak-Ublick GA. The role of FXR in disorders of bile acid homeostasis. Physiology (Bethesda). 2008;23:286–95.

    CAS  Google Scholar 

  • Fu D, Wakabayashi Y, Ido Y, Lippincott-Schwartz J, Arias IM. Regulation of bile canalicular network formation and maintenance by AMP-activated protein kinase and LKB1. J Cell Sci. 2010;123:3294–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu D, Wakabayashi Y, Lippincott-Schwartz J, Arias IM. Bile acid stimulates hepatocyte polarization through a cAMP-Epac-MEK-LKB1-AMPK pathway. Proc Natl Acad Sci U S A. 2011;108:1403–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gissen P, Arias IM. Structural and functional hepatocyte polarity and liver disease. J Hepatol. 2015;63:1023–37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Halilbasic E, Claudel T, Trauner M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J Hepatol. 2013;58:155–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homolya L, Fu D, Sengupta P, Jarnik M, Gillet JP, Vitale-Cross L, et al. LKB1/AMPK and PKA control ABCB11 trafficking and polarization in hepatocytes. PLoS One. 2014;9:e91921.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horikoshi Y, Kitatani K, Toriumi K, Fukunishi N, Itoh Y, Nakamura N, et al. Aberrant activation of atypical protein kinase C in carbon tetrachloride-induced oxidative stress provokes a disturbance of cell polarity and sealing of bile canalicular lumen. Am J Pathol. 2015;185:958–68.

    Article  CAS  PubMed  Google Scholar 

  • Houten SM, Auwerx J. The enterohepatic nuclear receptors are major regulators of the enterohepatic circulation of bile salts. Ann Med. 2004;36:482–91.

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi T, Sakisaka S, Sata M, Mori M, Tanikawa K. Different lobular distributions of altered hepatocyte tight junctions in rat models of intrahepatic and extrahepatic cholestasis. Hepatology. 1999;29:205–16.

    Article  CAS  PubMed  Google Scholar 

  • Kleuser B. Divergent role of sphingosine 1-phosphate in liver health and disease. Int J Mol Sci. 2018;19:722.

    Article  PubMed Central  CAS  Google Scholar 

  • Li Q, Chen B, Zeng C, Fan A, Yuan Y, Guo X, et al. Differential activation of receptors and signal pathways upon stimulation by different doses of sphingosine-1-phosphate in endothelial cells. Exp Physiol. 2015;100:95–107.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Liu R, Yu L, Yuan Z, Sun R, Yang H, et al. Alpha-naphthylisothiocyanate impairs bile acid homeostasis through AMPK-FXR pathways in rat primary hepatocytes. Toxicology. 2016a;370:106–15.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yuan Z, Liu R, Hassan HM, Yang H, Sun R, et al. UDCA and CDCA alleviate 17α-ethinylestradiol-induced cholestasis through PKA-AMPK pathways in rats. Toxicol Appl Pharmacol. 2016b;15:12–25.

    Article  CAS  Google Scholar 

  • Li X, Liu R, Yang J, Sun L, Zhang L, Jiang Z, et al. The role of long noncoding RNA H19 in gender disparity of cholestatic liver injury in multidrug resistance 2 gene knockout mice. Hepatology. 2017a;66:869–84.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Liu R, Luo L, Yu L, Chen X, Sun L, et al. Role of AMP-activated protein kinase α1 in 17α-ethinylestradiol-induced cholestasis in rats. Arch Toxicol. 2017b;91:481–94.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Liu R, Zhang L, Jiang Z. The emerging role of AMP-activated protein kinase in cholestatic liver diseases. Pharmacol Res. 2017c;125:105–13.

    Article  CAS  PubMed  Google Scholar 

  • Liang GH, Weber CR. Molecular aspects of tight junction barrier function. Curr Opin Pharmacol. 2014;19:84–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018;360:eaan5931.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nho K, Kueider-Paisley A, MahmoudianDehkordi S, Arnold M, Risacher SL, Louie G, et al. Alzheimer's disease neuroimaging initiative and the Alzheimer disease metabolomics consortium. Altered bile acid profile in mild cognitive impairment and Alzheimer’s disease: relationship to neuroimaging and CSF biomarkers. Alzheimers Dement. 2019;15:232–44.

    Article  PubMed  Google Scholar 

  • Porat-Shliom N, Tietgens AJ, Van Itallie CM, Vitale-Cross L, Jarnik M, Harding OJ, et al. Liver kinase B1 regulates hepatocellular tight junction distribution and function in vivo. Version 2. Hepatology. 2016;64:1317–29.

    Article  CAS  PubMed  Google Scholar 

  • Rida R, Kreydiyyeh S. FTY720P inhibits the Na+/K+ ATPase in Caco-2 cells via S1PR2: PGE2 and NO are along the signaling pathway. Life Sci. 2018;215:198–206.

    Article  CAS  PubMed  Google Scholar 

  • Rosen H, Sanna MG, Cahalan SM, Gonzalez-Cabrera PJ. Tipping the gatekeeper: S1P regulation of endothelial barrier function. Trends Immunol. 2007;28:102–7.

    Article  CAS  PubMed  Google Scholar 

  • Rowart P, Erpicum P, Krzesinski JM, Sebbagh M, Jouret F. Mesenchymal stromal cells accelerate epithelial tight junction assembly via the AMP-activated protein kinase pathway, independently of liver kinase B1. Stem Cells Int. 2017;2017:9717353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowart P, Wu J, Caplan MJ, Jouret F. Implications of AMPK in the formation of epithelial tight junctions. Int J Mol Sci. 2018;13:2040.

    Article  Google Scholar 

  • Sakisaka S, Kawaguchi T, Taniguchi E, Hanada S, Sasatomi K, Koga H, et al. Alterations in tight junctions differ between primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology. 2001;33:1460–8.

    Article  CAS  PubMed  Google Scholar 

  • Sambrotta M, Strautnieks S, Papouli E, Rushton P, Clark BE. Parry DA, et al; mutations in TJP2 cause progressive cholestatic liver disease. Nat Genet. 2014;46:326–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago P, Scheinberg AR, Levy C. Cholestatic liver diseases: new targets, new therapies. Ther Adv Gastroenterol. 2018;11:1756284818787400.

    Article  CAS  Google Scholar 

  • Schlegel N, Waschke J. cAMP with other signaling cues converges on Rac1 to stabilize the endothelial barrier- a signaling pathway compromised in inflammation. Cell Tissue Res. 2014;355:587–96.

    Article  CAS  PubMed  Google Scholar 

  • Shin K, Fogg VC, Margolis B. Tight junctions and cell polarity. Annu Rev Cell Dev Biol. 2006;22:207–35.

    Article  CAS  PubMed  Google Scholar 

  • Stieger B, Landmann L. Effects of cholestasis on membrane flow and surface polarity in hepatocytes. J Hepatol. 1996;24:128–34.

    PubMed  Google Scholar 

  • Trauner M, Fuchs CD, Halilbasic E, Paumgartner G. New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatology. 2017;65:1393–404.

    Article  PubMed  Google Scholar 

  • Treyer A, Müsch A. Hepatocyte polarity. Compr Physiol. 2013;3:243–87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Aoki H, Yang J, Peng K, Liu R, Li X, et al. The role of sphingosine 1-phosphate receptor 2 in bile-acid-induced cholangiocyte proliferation and cholestasis-induced liver injury in mice. Hepatology. 2017;65:2005–18.

    Article  CAS  PubMed  Google Scholar 

  • Xu XQ, Huang CM, Zhang YF, Chen L, Cheng H, Wang JM. S1PR1 mediates anti-apoptotic/pro-proliferative processes in human acute myeloid leukemia cells. Mol Med Rep. 2016;14:3369–75.

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Mei H, Xu D, Zhou W, Zhu X, Sun L, et al. Early indications of ANIT-induced cholestatic liver injury: alteration of hepatocyte polarization and bile acid homeostasis. Food Chem Toxicol. 2017a;110:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Shu T, Liu G, Mei H, Zhu X, Huang X, et al. Quantitative profiling of 19 bile acids in rat plasma, liver, bile and different intestinal section contents to investigate bile acid homeostasis and the application of temporal variation of endogenous bile acids. J Steroid Biochem Mol Biol. 2017b;172:69–78.

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Khan GJ, Wu Z, Wang X, Zhang L, Jiang Z. Bile acid homeostasis paradigm and its connotation with cholestatic liver diseases. Drug Discov Today. 2019;24:112–28.

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Wang X, Yuan Z, Miao Y, Wu Z, Chai Y, et al. Sphingosine 1-phosphate receptor-1 specific agonist SEW2871 ameliorates ANIT-induced dysregulation of bile acid homeostasis in mice plasma and liver. Toxicol Lett. 2020;331:242–53.

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Liu X, Yuan Z, Li X, Yang H, Yuan Z, et al. SRT1720 alleviates ANIT-induced cholestasis in a mouse model. Front Pharmacol. 2017;8:256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeisel MB, Dhawan P, Baumert TF. Tight junction proteins in gastrointestinal and liver disease. Gut. 2019;68:547–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zhenzhou Jiang, Luyong Zhang, and Tingting Yang conceived the original ideas and designed the study. Tingting Yang did immunofluorescence, hierarchical clustered heat map analysis and PCA analysis. Xue Wang carried out the HPLC-MS/MS analysis, quantitative real-time-PCR, and measurement of inflammatory cytokines. Yi Zhou and Cai Heng helped by doing MPO activity analysis and western blot analysis of animals and cells. Qiongna Yu carried out the isolation and sandwich culture of mice primary hepatocyte. Hao Yang did hematoxylin-eosin staining and immunohistochemistry. Tingting Yang, Xue Wang, Yi Zhou, and Cai Heng analyzed the data. Tingting Yang and Hao Yang edited of the figures and tables. Tingting Yang and Zhenzhou Jiang wrote the manuscript. Zhenzhou Jiang, Luyong Zhang, and Tingting Yang reviewed the manuscript. The rest of the authors either supplied reagent or helped in treatments to mice and cells.

Corresponding authors

Correspondence to Zhenzhou Jiang or Luyong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 86.1 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Wang, X., Zhou, Y. et al. SEW2871 attenuates ANIT-induced hepatotoxicity by protecting liver barrier function via sphingosine 1-phosphate receptor-1–mediated AMPK signaling pathway. Cell Biol Toxicol 37, 595–609 (2021). https://doi.org/10.1007/s10565-020-09567-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-020-09567-9

Keywords

Navigation