Skip to main content
Log in

Synthesis of Rod-Like Co3O4 Catalyst Derived from Co-MOFs with Rich Active Sites for Catalytic Combustion of Toluene

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Co3O4 catalyst derived from Co-MOFs demonstrated rich active sites in the catalytic reaction. In this paper, we prepared the rod-like Co3O4 catalysts by calcining Co-MOFs, which were synthesized by the solvothermal reaction of cobalt nitrate and diverse spatial structure linkers (L3, L4, and L5). Typically, the linkers with different spatial structures (L3, L4, and L5) were synthesized from p-aminobenzoic acid and tetracarboxylic anhydride with different structures (naphthalene-1,4,5,8-tetracarboxylic anhydride, benzene-1,2,4,5-tetracarboxylic anhydride, and perylene-3,4,9,10-tetracarboxylic anhydride). According to the BET analysis, the average pore size of Co3O4 increased with the increase of the linker spatial structure. However, the specific surface area of three Co3O4 increased at first, and then decreased with the increase spatial structure of the linker. Among three Co3O4 catalysts, the Co3O4-L3 exhibited the highest specific surface area. The Co3O4-L3 emerged with superior performance and stability for the catalytic combustion reaction of toluene due to large specific surface area, high redox capacity, plentiful surface active sites, and rich active adsorbed oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Soto-Garcia L, Ashley WJ, Bregg S, Walier D, LeBouf R, Hopke PK, Rossner A (2015) VOCs emissions from multiple wood pellet types and concentrations in indoor air. Energ Fuel 29:6485–6493

    Article  CAS  Google Scholar 

  2. Wren SN, Mihele CM, Lu G, Jiang Z, Wen D, Hayden K, Mittermeier RL, Staebler RM, Cober SG, Brook JR (2020) Improving insights on air pollutant mixtures and their origins by enhancing local monitoring in an area of intensive resource development. Environ Sci Technol 54:14936–14945

    Article  CAS  PubMed  Google Scholar 

  3. Wang YC, Lin C, Lin YK, Wang YF, Weng WH, Kuo YM (2016) Characteristics and determinants of ambient volatile organic compounds in primary schools. Environ Sci Proc Imp 18:1458–1468

    CAS  Google Scholar 

  4. Bishop GA, DeFries TH, Sidebottom JA, Kemper JM (2020) Vehicle exhaust remote sensing device method to screen vehicles for evaporative running loss emissions. Environ Sci Technol 54:14627–14634

    Article  CAS  PubMed  Google Scholar 

  5. Feng X, Liu H, He C, Shen Z, Wang T (2018) Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: a review. Catal Sci Technol 8:936–954

    Article  CAS  Google Scholar 

  6. Ushiki I, Sato Y, Ota M, Inomata H (2016) Multicomponent (binary and ternary) adsorption equilibria of volatile organic compounds (acetone, toluene, and n-hexane) on activated carbon in supercritical carbon dioxide. Ind Eng Chem Res 55:2163–2173

    Article  CAS  Google Scholar 

  7. Weon S, He F, Choi W (2019) Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation. Environ Sci Nano 6:3185–3214

    Article  CAS  Google Scholar 

  8. Zhang C, Wu Z, Li Z, Li H, Lin JM (2020) Inhibition effect of negative air ions on adsorption between volatile organic compounds and environmental particulate matter. Langmuir 36:5078–5083

    Article  CAS  PubMed  Google Scholar 

  9. Han W, Dong F, Han W, Tang Z (2020) A strategy to construct uniform MOFs/PAN nanowire derived bead-like Co3O4 for VOC catalytic combustion. Chem Commun 56:14307–14310

    Article  CAS  Google Scholar 

  10. Jian Y, Jiang Z, He C, Tian M, Song W, Gao G, Chai S (2021) Crystal facet engineering induced robust and sinter-resistant Au/α-MnO2 catalyst for efficient oxidation of propane: indispensable role of oxygen vacancies and Auδ+ species. Catal Sci Technol 11:1089–1097

    Article  CAS  Google Scholar 

  11. Hu Z, Liu X, Meng D, Guo Y, Guo Y, Lu G (2016) Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation. ACS Catal 6:2265–2279

    Article  CAS  Google Scholar 

  12. Rastegarpanah A, Meshkani F, Liu Y, Deng J, Jing L, Pei W, Zhang K, Hou Z, Han Z, Rezaei M, Dai H (2020) Toluene oxidation over the M-Al (M = Ce, La Co, Ce-La, and Ce-Co) catalysts derived from the modified “one-pot” evaporation-induced self-assembly method: effects of microwave or ultrasound irradiation and noble-metal loading on catalytic activity and stability. Ind Eng Chem Res 59:5624–5635

    Article  CAS  Google Scholar 

  13. Tian M, Liu S, Wang L, Ding H, Zhao D, Wang Y, Cui J, Fu J, Shang J, Li GK (2020) Complete degradation of gaseous methanol over Pt/FeOx catalysts by normal temperature catalytic ozonation. Environ Sci Technol 54:1938–1945

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Arandiyan H, Scott J, Akia M, Dai H, Deng J, Zinsou KFA, Amal R (2016) High performance Au-Pd supported on 3D hybrid strontium-substituted lanthanum manganite perovskite catalyst for methane combustion. ACS Catal 6:6935–6947

    Article  CAS  Google Scholar 

  15. He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z (2019) Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem Rev 119:4471–4568

    Article  CAS  PubMed  Google Scholar 

  16. Su Z, Yang W, Wang C, Xiong S, Cao X, Peng Y, Si W, Weng Y, Xue M, Li J (2020) Roles of oxygen vacancies in the bulk and surface of CeO2 for toluene catalytic combustion. Environ Sci Technol 54:12684–12692

    Article  CAS  PubMed  Google Scholar 

  17. Huang F, Ye D, Guo X, Zhan W, Guo Y, Wang L, Wang Y, Guo Y (2020) Effect of ceria morphology on the performance of MnOx/CeO2 catalysts in catalytic combustion of N, N-dimethylformamide. Catal Sci Technol 10:2473–2483

    Article  CAS  Google Scholar 

  18. Zeng X, Li B, Liu R, Li X, Zhu T (2020) Investigation of promotion effect of Cu doped MnO2 catalysts on ketone-type VOCs degradation in a one-stage plasma-catalysis system. Chem Eng J 384:123362

    Article  CAS  Google Scholar 

  19. Zhu J, Sun J, Tian S, Yang J, Feng J, Xiong Y (2020) Catalytic activity and mechanism of fluorinated MgO film supported on 3D nickel mesh for ozonation of gaseous toluene. Environ Sci Nano 7:2723–2734

    Article  CAS  Google Scholar 

  20. Guo Y, Wen M, Li G, An T (2021) Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review. Appl Catal B 281:119447

    Article  CAS  Google Scholar 

  21. Chen K, Li W, Zhou Z, Huang Q, Liu Y, Duan Q (2020) Hydroxyl groups attached to Co2+ on the surface of Co3O4: a promising structure for propane catalytic oxidation. Catal Sci Technol 10:2573–2582

    Article  CAS  Google Scholar 

  22. Liu W, Liu R, Zhang X (2020) Controllable synthesis of 3D hierarchical Co3O4 catalysts and their excellent catalytic performance for toluene combustion. Appl Surf Sci 507:145174

    Article  CAS  Google Scholar 

  23. Dong X, Su Y, Lu T, Zhang L, Wu L, Lv Y (2018) MOFs-derived dodecahedra porous Co3O4: an efficient cataluminescence sensing material for H2S. Sens Actuat B 258:349–357

    Article  CAS  Google Scholar 

  24. Ren JT, Zheng YL, Yuan K, Zhou L, Wu K, Zhang YW (2020) Self-templated synthesis of Co3O4 hierarchical nanosheets from a metal-organic framework for efficient visible-light photocatalytic CO2 reduction. Nanoscale 12:755–762

    Article  CAS  PubMed  Google Scholar 

  25. Dong F, Han W, Guo Y, Han W, Tang Z (2021) CeCoOx-MNS catalyst derived from three-dimensional mesh nanosheet Cobased metal-organic frameworks for highly efficient catalytic combustion of VOCs. Chem Eng J 405:126948

    Article  CAS  Google Scholar 

  26. Han W, Tang Z, Lin Q (2020) Rationally designed synthesis of metal-organic framework-derived cobalt oxide with abundant surface active sites for efficient catalytic oxidation performance. Cryst Growth Des 20:5716–5727

    Article  CAS  Google Scholar 

  27. Wang C, Jia S, Zhang Y, Nian Y, Wang Y, Han Y, Liu Y, Ren H, Wu S, Yao K, Han X (2020) Catalytic reactivity of Co3O4 with different facets in the hydrogen abstraction of phenol by persulfate. Appl Catal B 270:118819

    Article  CAS  Google Scholar 

  28. Jiang Z, Jiang Z, Maiyalagan T, Manthiram A (2016) Cobalt oxide-coated N- and B-doped graphene hollow spheres as bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. J Mater Chem A 4:5877–5889

    Article  CAS  Google Scholar 

  29. Du X, Dong F, Tang Z, Zhang J (2020) Precise design and synthesis of Pd/InOx@CoOx core–shell nanofibers for the highly efficient catalytic combustion of toluene. Nanoscale 12:12133–12145

    Article  CAS  PubMed  Google Scholar 

  30. Jin C, Lian J, Gao Y, Guo K, Wu K, Gao L, Zhang X, Zhang X, Liu Q (2019) Si Doped CoO nanorods as peroxidase mimics for colorimetric sensing of reduced glutathione. ACS Sustain Chem Eng 7:13989–13998

    Article  CAS  Google Scholar 

  31. Nam KM, Shim JH, Han DW, Kwon HS, Kang YM, Li Y, Song H, Seo WS, Park JT (2010) Syntheses and characterization of wurtzite CoO, rocksalt CoO, and spinel Co3O4 nanocrystals: their interconversion and tuning of phase and morphology. Chem Mater 22:4446–4454

    Article  CAS  Google Scholar 

  32. Deng J, Zhang X, Zhao B, Bai Z, Wen S, Li S, Li S, Yang J, Zhang R (2018) Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. J Mater Chem C 6:7128–7140

    Article  CAS  Google Scholar 

  33. Rabani I, Yoo J, Kim HS, Lam DV, Hussain S, Karuppasamy K, Seo YS (2021) Highly dispersive Co3O4 nanoparticles incorporated into a cellulose nanofiber for a high-performance flexible supercapacitor. Nanoscale 13:355–370

    Article  CAS  PubMed  Google Scholar 

  34. Han W, Zhao H, Dong F, Tang Z (2018) Morphology-controlled synthesis of 3D, mesoporous, rosette-like CeCoOx catalysts by pyrolysis of Ce[Co(CN)6] and application for the catalytic combustion of toluene. Nanoscale 10:21307–21319

    Article  CAS  PubMed  Google Scholar 

  35. Cai Y, Xu J, Guo Y, Liu J (2019) Ultrathin, polycrystalline, two-dimensional Co3O4 for low-temperature CO oxidation. ACS Catal 9:2558–2567

    Article  CAS  Google Scholar 

  36. Shi W, Guo F, Zhu C, Wang H, Li H, Huang H, Liu Y, Kang Z (2017) Carbon dots anchored on octahedral CoO as a stable visible-light-responsive composite photocatalyst for overall water splitting. J Mater Chem A 5:19800–19807

    Article  CAS  Google Scholar 

  37. He M, Zhang P, Xu S, Yan X (2016) Morphology engineering of Co3O4 nanoarrays as free-standing catalysts for lithium-oxygen batteries. ACS Appl Mater Inter 8:23713–23720

    Article  CAS  Google Scholar 

  38. Li L, Yang Q, Zhang C, Yan J, Peng Y, Li J (2019) Hollow-structural Ag/Co3O4 nanocatalyst for CO oxidation: interfacial synergistic effect. ACS Appl Nano Mater 2:3480–3489

    Article  CAS  Google Scholar 

  39. Li J, Lu G, Wu G, Mao D, Guo Y, Wang Y, Guo Y (2014) Effect of TiO2 crystal structure on the catalytic performance of Co3O4/TiO2 catalyst for low-temperature CO oxidation. Catal Sci Technol 4:1268–1275

    Article  CAS  Google Scholar 

  40. Han W, Dong F, Han W, Tang Z (2020) Mn-polyacrylonitrile nanofibers decorated with Co-metal–organic frameworks as precursors of CoMnOx catalysts for the combustion of toluene. ACS Appl Nano Mater 3:7818–7828

    Article  CAS  Google Scholar 

  41. Jian Y, Tian M, He C, Xiong J, Jiang Z, Jin H, Zheng L, Albilali R, Shi JW (2021) Efficient propane low-temperature destruction by Co3O4 crystal facets engineering: Unveiling the decisive role of lattice and oxygen defects and surface acid-base pairs. Appl Catal B 283:119657

    Article  CAS  Google Scholar 

  42. Wang X, Li X, Mu J, Fan S, Chen X, Wang L, Yin Z, Tadé M, Liu S (2019) Oxygen vacancy-rich porous Co3O4 nanosheets toward boosted NO reduction by CO and CO oxidation: insights into the structure-activity relationship and performance enhancement mechanism. ACS Appl Mater Interface 11:41988–41999

    Article  CAS  Google Scholar 

  43. Zheng Y, Wang C, Li J, Zhong F, Xiao Y, Jiang L (2020) Enhanced methane oxidation over Co3O4–In2O3-x composite oxide nanoparticles via controllable substitution of Co3+/Co2+ by In3+ ions. ACS Appl Nano Mater 3:9470–9479

    Article  CAS  Google Scholar 

  44. Luo Y, Zheng Y, Feng X, Lin D, Qian Q, Wang X, Zhang Y, Chen Q, Zhang X (2020) Controllable P doping of the LaCoO3 catalyst for efficient propane oxidation: optimized surface Co distribution and enhanced oxygen vacancies. ACS Appl Mater Inter 12:23789–23799

    Article  CAS  Google Scholar 

  45. Mo S, Zhang Q, Sun Y, Zhang M, Li J, Ren Q, Fu M, Wu J, Chen L, Ye D (2019) Gaseous CO and toluene co-oxidation over monolithic core–shell Co3O4-based heterostructured catalysts. J Mater Chem A 7:16197–16210

    Article  CAS  Google Scholar 

  46. Li R, Zhang L, Zhu S, Fu S, Dong X, Ida S, Zhang L, Guo L (2020) Layered δ-MnO2 as an active catalyst for toluene catalytic combustion. Appl Catal A 602:117715

    Article  CAS  Google Scholar 

  47. Yu K, Deng J, Shen Y, Wang A, Shi L, Zhang D (2021) Efficient catalytic combustion of toluene at low temperature by tailoring surficial Pt0 and interfacial Pt-Al(OH)x species. Science 24:10268

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52070182, 51908535), Province Natural Science Foundation of Gansu (20JR10RA053, 20JR10RA046), Major Science and Technology Projects in Inner Mongolia Autonomous Region (2019ZD018), Science and Technology Service Network Initiative (STS) of Chinese Academy of Science (KFJ-STS-QYZD-170), K.C.Wong Education Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicheng Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 741 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Zhang, G. & Tang, Z. Synthesis of Rod-Like Co3O4 Catalyst Derived from Co-MOFs with Rich Active Sites for Catalytic Combustion of Toluene. Catal Surv Asia 26, 92–103 (2022). https://doi.org/10.1007/s10563-021-09351-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-021-09351-7

Keywords

Navigation