Skip to main content
Log in

Effect of Calcination Temperature on the Catalytic Oxidation of Formaldehyde Over Co3O4–CeO2 Catalysts

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The effect of calcination temperature (350–650 °C) on the structure and catalytic activity of Co3O4–CeO2 mixed oxides prepared by sol–gel method was investigated by XRD, H2-TPR, O2-TPD and formaldehyde (HCHO) oxidation. The Co3O4–CeO2 calcined at 450 °C (Co3O4–CeO2-450) exhibited the best performance, showing that the complete oxidation of HCHO was achieved at temperature as low as 80 °C. The results of characterizations revealed that the Co3O4–CeO2-450 had excellent catalytic activity due to the larger specific surface area, the best reducibility and more abundant surface active oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gamelas JAF, Oliveira F, Evtyugina MG, Portugal I, Evtuguin DV (2016) Catalytic oxidation of formaldehyde by ruthenium multisubstituted tungstosilicic polyoxometalate supported on cellulose/silica hybrid. Appl Catal A 509:8–16

    Article  CAS  Google Scholar 

  2. Hu PP, Amghouz Z, Huang ZW, Xu F, Chen YX, Tang XF (2015) Surface-confined atomic silver centers catalyzing formaldehyde oxidation. Environ Sci Technol 49:2384–2390

    Article  CAS  Google Scholar 

  3. Kim SS, Park KH, Hong SC (2011) A study on HCHO oxidation characteristics at room temperature using a Pt/TiO2 catalyst. Appl Catal A 398:96–103

    Article  CAS  Google Scholar 

  4. Moreno-Pirajan JC, Tirano J, Salamanca B, Giraldo L (2010) Activated carbon modified with copper for adsorption of propanethiol. Int J Mol Sci 11:927–942

    Article  CAS  Google Scholar 

  5. Zhu Z, Wu RJ (2005) The degradation of formaldehyde using a Pt@TiO2 nanoparticles in presence of visible light irradiation at room temperature. J Taiwan Inst Chem E 50:276–281

    Article  Google Scholar 

  6. Chang MB, Lee CC (1995) Destruction of formaldehyde with dielectric barrier discharge plasmas. Environ Sci Technol 29:181–186

    Article  CAS  Google Scholar 

  7. Han YL, Zheg Z, Yin CH, Li PF, Zhang H, Hu YM (2016) Catalytic oxidation of formaldehyde on iron ore tailing. J Taiwan Inst Chem E 66:217–221

    Article  CAS  Google Scholar 

  8. Li HF, Zhang N, Chen P, Luo MF, Lu JQ (2011) High surface area Au/CeO2 catalysts for low temperature formaldehyde oxidation. Appl Catal B 110:279–285

    Article  CAS  Google Scholar 

  9. Zhang CB, He H, Tanaka KI (2005) Perfect catalytic oxidation of formaldehyde over a Pt/TiO2 catalyst at room temperature. Catal Commun 6:211–214

    Article  CAS  Google Scholar 

  10. Wang RH, Li JH (2009) OMS-2 catalysts for formaldehyde oxidation: Effects of Ce and Pt on structure and performance of the catalysts. Catal Lett 131:500–505

    Article  CAS  Google Scholar 

  11. Huang HB, Leung DYC (2011) Complete oxidation of formaldehyde at room temperature using TiO2 supported metallic Pd nanoparticles. ACS Catal 1:348–354

    Article  CAS  Google Scholar 

  12. Wen YR, Tang X, Li JH, Hao JM, Wei LS, Tang XF (2009) Impact of synthesis method on catalytic performance of MnO x -SnO2 for controlling formaldehyde emission. Catal Commun 10:1157–1160

    Article  CAS  Google Scholar 

  13. Tang XF, Li YG, Huang XM, Xu YD, Zhu HQ, Wang JG, Shen WJ (2006) MnO x -CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature. Appl Catal B 62:265–273

    Article  CAS  Google Scholar 

  14. Bai BY, Arandiyan H, Li JH (2013) Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts. Appl Catal B 142–143:677–683

    Article  Google Scholar 

  15. Park SM, Jeon SW, Kim SH (2014) Formaldehyde oxidation over manganese-cerium-aluminum mixed oxides supported on cordierite monoliths at low temperatures. Catal Lett 144:756–766

    Article  CAS  Google Scholar 

  16. Guo Q, Liu Y (2007) Preferencial oxidation of CO in H2 over Co3O4–CeO2 catalysts. Kinet R Catal Lett 92:19–25

    Article  CAS  Google Scholar 

  17. Bastos SST, Carabineiro SAC, Orfao JJM, Pereira MFR, Delgado JJ, Figueiredo JL (2012) Total oxidation of ethyl acetate, ethanol and toluene catalyzed by exotemplated manganese and cerium oxides loaded with gold. Catal Today 180:148–154

    Article  CAS  Google Scholar 

  18. Kamiuchi N, Mitsui T, Muroyama H, Matsui T, Eguchi RK (2010) Catalytic combustion of ethyl acetate and nano-structural changes of ruthenium catalysts supported on tin oxide. Appl Catal B 97:120–126

    Article  CAS  Google Scholar 

  19. Chen X, Carabineiro SAC, Bastos SST, Tavares PB, Orfao JJM, Pereira MFR, Figueiredo JL (2014) Catalytic oxidation of ethyl acetate over La–Co and La–Cu oxides. J Environ Chem Eng 2:344–355

    Article  CAS  Google Scholar 

  20. Woods MP, Gawade P, Tan B, Ozkan US (2010) Preferential oxidation of carbon monoxide on Co/CeO2 nanoparticles. Appl Catal B 97:28–35

    Article  CAS  Google Scholar 

  21. Ma CY, Wang DH, Xue WJ, Dou BJ, Wang HL, Hao ZP (2011) Investigation of formaldehyde oxidation over Co3O4–CeO2 and Au/Co3O4–CeO2 catalysts at room temperature: effective removal and determination of reaction mechanism. Environ Sci Technol 45:3628–3634

    Article  CAS  Google Scholar 

  22. Liu BC, Liu Y, Li CY, Hu WT, Jing P, Wang Q, Zhang J (2012) Three-dimensionally ordered macroporous Au/CeO2–Co3O4 catalysts with nanoporous walls for enhanced catalytic oxidation of formaldehyde. Appl Catal B 127:47–58

    Article  CAS  Google Scholar 

  23. Galetti AE, Gomez MF, Arrua LA, Abello MC (2011) Ethanol steam reforming over Ni/ZnAl2O4–CeO2. Influence of calcination atmosphere and nature of catalytic precursor. Appl Catal A 408:78–86

    Article  CAS  Google Scholar 

  24. Li P, He C, Cheng J, Ma CY, Dou BJ, Hao ZP (2011) Catalytic oxidation of toluene over Pd/Co3AlO catalysts derived from hydrotalcite-like compounds: effects of preparation methods. Appl Catal B 101:570–579

    Article  CAS  Google Scholar 

  25. Cui X, Xu J, Zhang C, Yang Y, Gao P, Wu B, Li Y (2011) Effect of pretreatment on precipitated Fe-Mo Fischer-ropsch catalysts: morphology, carburization, and catalytic performance. J Catal 282:35–46

    Article  CAS  Google Scholar 

  26. Lu H, Jiang CF, Ding ZW, Wang W, Chu W, Feng YY (2016) Effects of ultrasonic impregnation combined with calcination in N2 atmosphere on the property of Co3O4/CeO2 composites for catalytic methane combustion. J Energy Chem 25:387–392

    Article  Google Scholar 

  27. Lu SH, Liu Y (2012) Preparation of meso-macroporous carbon nanotube-alumina composite monoliths and their application to the preferential oxidation of CO in hydrogen-rich gases. Appl Catal B 111–112:492–501

    Article  Google Scholar 

  28. Liu ZG, Chai SH, Binder A, Li YY, Ji LT, Dai S (2013) Influence of calcination temperature on the structure and catalytic performance of CuO x –CoO y –CeO2 ternary mixed oxide for CO oxidation. Appl Catal A 451:282–288

    Article  CAS  Google Scholar 

  29. Wang C, Sasmaz E, Wen C, Lauterbach J (2015) Pd supported on SnO2–MnO x –CeO2 catalysts for low temperature CO Oxidation. Catal Today 258:481–486

    Article  CAS  Google Scholar 

  30. Zhao ZK, Bao T, Li Y, Min X, Zhao D, Muhammad T (2014) The supported CeO2/Co3O4–MnO2/CeO2 catalyst on activated carbon prepared by a successive-loading approach with superior catalytic activity and selectivity for CO preferential oxidation in H2-rich stream. Catal Commun 48:24–28

    Article  CAS  Google Scholar 

  31. Chen YN, Liu DS, Yang LJ, Meng M, Zhang J, Zheng LR, Chu SQ, TD Hu (2013) Ternary composite oxide catalysts CuO/Co3O4–CeO2 with wide temperature-window for the preferential oxidation of CO in H2-rich stream. Chem Eng J 234:88–98

    Article  CAS  Google Scholar 

  32. Liotta LF, Carlo GD, Pantaleo G, Venezia AM, Deganello G (2006) Co3O4/CeO2 composite oxides for methane emissions abatement: relationship between Co3O4–CeO2 interaction and catalytic activity. Appl Catal B 66:217–227

    Article  CAS  Google Scholar 

  33. Carvalho FLS, Asencios YJO, Bellido JDA, Assaf EM (2016) Bio-ethanol steam reforming for hydrogen production over Co3O4/CeO2 catalysts synthesized by one-step polymerization method. Fuel Process Technol 142:182–191

    Article  CAS  Google Scholar 

  34. Carvalho FLS, Asencios YJO, Rego AMB, Assaf EM (2014) Hydrogen production by steam reforming of ethanol over Co3O4/La2O3/CeO2 catalysts synthesized by one-steppolymerization method. Appl Catal A 483:52–62

    Article  CAS  Google Scholar 

  35. Liotta LF, Carlo GD, Pantaleo G, Deganello G (2007) Catalytic performance of Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite oxides for methane combustion: Influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture. Appl Catal B 70:314–322

    Article  CAS  Google Scholar 

  36. Luo JY, Meng M, Li X, Li XG, Zha YQ, Hu TD, Xie YN, Zhang J (2008) Mesoporous Co3O4–CeO2 and Pd/Co3O4–CeO2 catalysts: synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation. J Catal 254:310–324

    Article  CAS  Google Scholar 

  37. Maia TA, Assaf JM, Assaf EM (2014) Study of Co/CeO2-γ-Al2O3 catalysts for steam and oxidative reforming of ethanol for hydrogen production. Fuel Process Technol 128:134–145

    Article  CAS  Google Scholar 

  38. Huang H, Dai QG, Wang XY (2014) Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene. Appl Catal B 158–159:96–105

    Article  Google Scholar 

  39. Tang CW, Kuo CC, Kuo MC, Wang CB, Chie SH (2006) Influence of pretreatment conditions on low-temperature carbon monoxide oxidation over CeO2/Co3O4 catalysts. Appl Catal A 309:37–43

    Article  CAS  Google Scholar 

  40. Tian BZ, Liu X, Solovyov L, Liu Z, Zang H, Zhang Z, Xie S, Zhang F, Tu B, Yu C, Terasaki O, Zhao D (2004) Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures. J Am Chem Soc 126:865–875

    Article  CAS  Google Scholar 

  41. Akram S, Wang Z, Wang Q, Chen L, Shen GL, Han N, Chen YF, Ge GL (2016) Low-temperature efficient degradation of ethyl acctate catalyzed by lattice doped CeO2–CoO x nanocomposites. Catal Commun 73:123–127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been carried out within Project supported by the Doctoral Program of Xi’an Shiyou University (No. 134010155) and Shaanxi Provincial College Students’ Innovative Entrepreneurial Training Program (201610705046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhong Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Chen, C., Wang, F. et al. Effect of Calcination Temperature on the Catalytic Oxidation of Formaldehyde Over Co3O4–CeO2 Catalysts. Catal Surv Asia 21, 143–149 (2017). https://doi.org/10.1007/s10563-017-9234-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-017-9234-1

Keywords

Navigation