Skip to main content
Log in

Synthesis, characterization and catalytic performance in enantioselective reactions by mesoporous silica materials functionalized with chiral thiourea-amine ligand

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Chiral heterogeneous catalysts have been synthesized by grafting of silyl derivatives of (1R, 2R)- or (1S, 2S)-1,2-diphenylethane-1,2-diamine on SBA-15 mesoporous support. The mesoporous material SBA-15 and so-prepared chiral heterogeneous catalysts were characterized by a combination of different techniques such as X-ray diffractometry (XRD), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), and Brunauer–Emmett–Teller (BET) surface area. Results showed that (1R, 2R)- and (1S, 2S)-1,2-diphenylethane-1,2-diamine were successively immobilized on SBA-15 mesoporous support. Chiral heterogeneous catalysts and their homogenous counterparts were tested in enantioselective transfer hydrogenation of aromatic ketones and enantioselective Michael addition of acetylacetone to β-nitroolefin derivatives. The catalysts demonstrated notably high catalytic conversions (up to 99%) with moderate enantiomeric excess (up to 30% ee) for the heterogeneous enantioselective transfer hydrogenation. The catalytic performances for enantioselective Michael reaction showed excellent activities (up to 99%) with poor enantioselectivities. Particularly, the chiral heterogeneous catalysts could be readily recycled for Michael reaction and reused in three consecutive catalytic experiments with no loss of catalytic efficacies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available in the supplementary material of this article.

References

  1. H.U. Blaser, E. Schmidt, Asymmetric Catalysis on Industrial Scale (Wiley-VCH, Weinheim, 2004)

    Google Scholar 

  2. M. Heitbaum, F. Glorius, I. Escher, Angew. Chemie - Int. Ed. 45, 4732 (2006)

    Article  CAS  Google Scholar 

  3. F. Meemken, A. Baiker, Chem. Rev. 117, 11522 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. G. Szllsi, Catal. Sci. Technol. 8, 389 (2018)

    Google Scholar 

  5. E.N. Jacobsen, A. Pfaltz, H. Yamamoto, Comprehensive Asymmetric Catalysis (Springer, Berlin, 1999)

    Book  Google Scholar 

  6. I. Ojima, Catalytic Asymmetric Synthesis, 2nd edn. (Wiley, New York, 2000)

    Book  Google Scholar 

  7. T.P. Yoon, E.N. Jacobsen, Science 299, 1691 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. N. Amirmahani, N.O. Mahmoodi, M. Malakootian, A. Pardakhty, N. Seyedi, Res. Chem. Intermed. 46, 4595 (2020)

    Article  CAS  Google Scholar 

  9. F. Mohajer, G.M. Ziarani, A. Badiei, Res. Chem. Intermed. (2020)

  10. H. Sauer, J. Gunther, J. Hescheler, M. Wartenberg, Am. J. Pathol. 156, 151 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. R.J. D’Amato, M.S. Loughnan, E. Flynn, J. Folkman, Proc. Natl. Acad. Sci. U. S. A. 91, 4082 (1994)

    Article  PubMed  PubMed Central  Google Scholar 

  12. E. Tokunaga, T. Yamamoto, E. Ito, N. Shibata, Sci. Rep. 8, 6 (2018)

    Article  CAS  Google Scholar 

  13. K.M. Rentsch, J. Biochem. Biophys. Methods. 54, 1 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. S. Gladiali, E. Alberico, Chem. Soc. Rev. 35, 226 (2006)

    Article  CAS  PubMed  Google Scholar 

  15. R. Noyori, M. Yamakawa, S. Hashiguchi, J. Org. Chem. 66, 7931 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. C. J. Wang, Z. H. Zhang, X. Q. Dong, X. J. Wu, Chem. Commun. 1431 (2008)

  17. A. Matsunami, Y. Kayaki, Tetrahedron Lett. 59(6), 504 (2018)

    Article  CAS  Google Scholar 

  18. F.E. Held, S.B. Tsogoeva, Catal. Sci. Technol. 6(3), 645 (2016)

    Article  CAS  Google Scholar 

  19. C. Borie, L. Ackermann, M. Nechab, Chem. Soc. Rev. 45(5), 1368–1386 (2016)

    Article  CAS  PubMed  Google Scholar 

  20. W. Xie, H. Wang, Renew. Energy 145, 1709 (2020)

    Article  CAS  Google Scholar 

  21. M. Nikoorazm, Z. Rezaei, B. Tahmasbi, J. Porous Mater. 27, 671 (2020)

    Article  CAS  Google Scholar 

  22. E. Baráth, Synth. 52(04), 504 (2020)

    Article  CAS  Google Scholar 

  23. S. Samadi, A. Ashouri, M. Samadi, ACS Omega 5, 22367 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. P. Van Der Voort, K. Leus, E. De Canck, in Introduction to porous materials. ed. by D. Atwood, B. Crabtree, G. Meyer, D. Woollins, H.V. Huynh (Wiley, New York, 2019)

    Google Scholar 

  25. F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angew. Chemie - Int. Ed. 45, 3216 (2006)

    Article  CAS  Google Scholar 

  26. Z. Teng, W. Li, Y. Tang, A. Elzatahry, G. Lu, D. Zhao, Adv. Mater. 31, 1707612 (2019)

    Article  CAS  Google Scholar 

  27. J.G. Croissant, Y. Fatieiev, A. Almalik, N.M. Khashab, Adv. Healthc. Mater. 7, 1700831 (2018)

    Article  CAS  Google Scholar 

  28. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)

    Article  CAS  Google Scholar 

  29. Y. Cao, S. Che, in Chiral nanomaterials: preparation, properties and applications. ed. by Z.T. Tang (Wiley, USA, 2018), pp. 121–177

    Google Scholar 

  30. H. Albuquerque, L. Carneiro, A.P. Carvalho, J. Pires, A.R. Silva, Polyhedron 79, 315 (2014)

    Article  CAS  Google Scholar 

  31. A.R. Silva, Curr. Org. Chem. 18(10), 1226 (2014)

    Article  CAS  Google Scholar 

  32. J. Chen, N.A. Butt, W. Zhang, Res. Chem. Intermed. 45, 5959 (2019)

    Article  CAS  Google Scholar 

  33. J. Cossy, F. Eustache, P.I. Dalko, Tetrahedron Lett. 42, 5005 (2001)

    Article  CAS  Google Scholar 

  34. J. Takehara, S. Hashiguchi, A. Fujii, S.I. Inoue, T. Ikariya, R. Noyori, Chem. Commun. 12, 233 (1996)

    Article  Google Scholar 

  35. P.G. Echeverria, C. Férard, P. Phansavath, V. Ratovelomanana-Vidal, Catal. Commun. 62, 95 (2015)

    Article  CAS  Google Scholar 

  36. F. Foubelo, C. Nájera, M. Yus, Tetrahedron Asymmetry 26, 769 (2015)

    Article  CAS  Google Scholar 

  37. P.N. Liu, P.M. Gu, F. Wang, Y.Q. Tu, Org. Lett. 6(2), 169 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 117, 7562 (1995)

    Article  CAS  Google Scholar 

  39. D.D. Perrin, W.F.L. Armarego, Purification of Laboratory Chemicals, 2nd edn. (Pergamon, UK, 1989)

    Google Scholar 

  40. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998)

    Article  CAS  Google Scholar 

  41. W. Yao, J. Zhu, X. Zhou, R. Jiang, P. Wang, W. Chen, Tetrahedron 74, 4205 (2018)

    Article  CAS  Google Scholar 

  42. S.F. Lu, D.M. Du, J. Xu, S.W. Zhang, J. Am. Chem. Soc. 128, 7418 (2006)

    Article  CAS  PubMed  Google Scholar 

  43. Z. Fu, W. Yuan, N. Chen, Green Chem. 20, 4484 (2018)

    Article  CAS  Google Scholar 

  44. B.A. Ondrusek, H. Chung, ACS Omega 2(7), 3951 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D.M. Wiles, B.A. Gingras, T. Suprunchuk, Can. J. Chem. 45, 469 (1967)

    Article  CAS  Google Scholar 

  46. W. Xie, L. Zhao, Energy Convers. Manag. 79, 34 (2014)

    Article  CAS  Google Scholar 

  47. L.B.O. de Freitas, I.J.G. Bravo, W.A.A. de Macedo, E.M.B. de Sousa, J. Sol-Gel Sci. Technol. 77, 186 (2016)

    Article  CAS  Google Scholar 

  48. A.A. Shahrnoy, A.R. Mahjoub, S. Shokrollahi, N. Ezzati, K. Elsner, C.T. Koch, Appl. Organomet. Chem. 34(7), e5645 (2020)

    Google Scholar 

  49. J.C. Doadrio, E.M.B. Sousa, I. Izquierdo-Barba, A.L. Doadrio, J. Perez-Pariente, M. Vallet-Regí, J. Mater. Chem. 15, 462 (2006)

    Article  Google Scholar 

  50. K.S.W. Sing, Pure Appl. Chem. 57, 603 (1985)

    Article  CAS  Google Scholar 

  51. J.M. Kim, S.M. Chang, S.M. Kong, K.S. Kim, J. Kim, W.S. Kim, Ceram. Int. 35, 1015 (2009)

    Article  CAS  Google Scholar 

  52. S. Rohani, G.M. Ziarani, A. Badiei, A. Ziarati, M. Jafari, A. Shayesteh, Appl. Organomet. Chem. 32, e4397 (2018)

    Article  CAS  Google Scholar 

  53. L. Zhang, J. Liu, J. Yang, Q. Yang, C. Li, Chem. - An Asian J. 3, 1842 (2008)

    Article  CAS  Google Scholar 

  54. C.P. Jaroniec, R.K. Gilpin, M. Jaroniec, J. Phys. Chem. B 101, 6861 (1997)

    Article  CAS  Google Scholar 

  55. D. Jiang, Q. Yang, J. Yang, L. Zhang, G. Zhu, W. Su, C. Li, Chem. Mater. 17, 6154 (2005)

    Article  CAS  Google Scholar 

  56. X. Liu, P. Wang, Y. Yang, P. Wang, Q. Yang, Chem. - An Asian J. 5, 1232 (2010)

    Article  CAS  Google Scholar 

  57. X. Liu, P. Wang, L. Zhang, J. Yang, C. Li, Q. Yang, Chem. - A Eur. J. 16, 12727 (2010)

    Article  CAS  Google Scholar 

  58. D. Jiang, Q. Yang, H. Wang, G. Zhu, J. Yang, C. Li, J. Catal. 239, 65 (2006)

    Article  CAS  Google Scholar 

  59. Z. Tang, J. Sun, H. Zhao, S. Bai, X. Wu, H. Panezai, Microporous Mesoporous Mater. 260, 245 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mert AKGÜN from Science and Technology Application and Research Centre, Çanakkale Onsekiz Mart University, is gratefully acknowledged for his technical assistance. The authors would like to thank İrem Tutkum Aykut for her assistance during GC measurements.

Funding

This work was supported by The Scientific and Technological Research Council of Turkey (TÃœBÄ°TAK, project no: KBAG-118Z523).

Author information

Authors and Affiliations

Authors

Contributions

YG is responsible for conceptualization, project administration, visualization, investigation, writing—review & editing, funding acquisition, supervision. HZG is responsible for methodology, investigation, writing—original Draft, conceptualization, resources and data curation.

Corresponding author

Correspondence to Yaşar Gök.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5254 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gök, Y., Gök, H.Z. Synthesis, characterization and catalytic performance in enantioselective reactions by mesoporous silica materials functionalized with chiral thiourea-amine ligand. Res Chem Intermed 47, 853–874 (2021). https://doi.org/10.1007/s11164-020-04301-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04301-w

Keywords

Navigation