Skip to main content
Log in

Synergetic Photocatalytic Activity of Metal-Free Boron Nitride Quantum Dots and Graphitic Carbon Nitride: Harnessing Visible Light for Organic Waste Elimination–A Theoretical and Experimental Approach

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Water pollution has become a major concern due to the rapid development of industrialization and rise in chemical use, which poses a great risk to humans and environment. Herein, a novel nanocomposite of metal-free boron nitride quantum dots (BNQDs) supported on graphitic carbon nitride (g-C3N4) photocatalyst (BNQDs@g-C3N4) was successfully synthesized using a facile and green approach. The prepared nanocomposite exhibited exceptional photocatalytic activity in the degradation of aqueous waste pollutants, including organic dyes and pharmaceuticals under visible light irradiation, its worth mentioning, the rate constant of tetracycline removal was 0.064 mol.L.min−1. The experimental results indicated that the significantly boosted photocatalytic activity of the BNQDs@g-C3N4 composite proved the energy gap modulation by the construction of heterojunction between the BNQDs and g-C3N4 in s-scheme photocatalyst. Theoretical calculations were done to calculate the crystal, electronic structures, and properties of BNQDs@g-C3N4. Theoretical results showed that loading of BNQDs on g-C3N4 provides an extended band edges that are more applicable in visible light-based photocatalysis process. Additionally, it offers additional bands that facilitate the passage of electrons between the valance and conduction bands. Finally, a possible s-scheme mechanism of the charge separation improvement was proposed by analyzing the experimental results and theoretical calculations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goyi AA, Sher Mohammad NM, Omer KM (2023) Preparation and characterization of potato peel derived hydrochar and its application for removal of Congo red: a comparative study with potato peel powder. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-023-04965-y

    Article  Google Scholar 

  2. Mustafa FS, Hama Aziz KH (2023) Heterogeneous catalytic activation of persulfate for the removal of rhodamine B and diclofenac pollutants from water using iron-impregnated biochar derived from the waste of black seed pomace. Process Saf Environ Prot 170:436–448

    Article  CAS  Google Scholar 

  3. Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ (2021) Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 9:1–34

    Article  Google Scholar 

  4. Hama Aziz KH (2022) Heterogeneous catalytic activation of peroxydisulfate toward degradation of pharmaceuticals diclofenac and ibuprofen using scrap printed circuit board. RSC Adv 13:115–128

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  5. Hama Aziz KH (2019) Application of different advanced oxidation processes for the removal of chloroacetic acids using a planar falling film reactor. Chemosphere 228:377–383

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Tahir MB, Sohaib M, Sagir M, Rafique M (2022) Role of Nanotechnology in Photocatalysis. In: Olabi AGBTEoSM (ed) Encyclopedia of smart materials. Elsevier, pp 578–589. https://doi.org/10.1016/B978-0-12-815732-9.00006-1

    Chapter  Google Scholar 

  7. Wellia DV, Kusumawati Y, Diguna LJ, Amal MI (2017) In: Khan MM, Pradhan D, Sohn Y (eds) Nanocomposites for visible light-induced photocatalysis. Springer International Publishing, pp 1–17. https://doi.org/10.1007/978-3-319-62446-4_1

    Chapter  Google Scholar 

  8. Chebanenko MI, Zakharova NV, Lobinsky AA, Popkov VI (2019) Ultrasonic-Assisted Exfoliation of Graphitic Carbon Nitride and its Electrocatalytic Performance in Process of Ethanol Reforming. Semicond 53(16):207–207

    Article  Google Scholar 

  9. Li C, Xu Y, Tu W, Chen G, Xu R (2017) Metal-Free Photocatalysts for Various Applications in Energy Conversion and Environmental Purification. Green Chem 19:882–899

    Article  CAS  Google Scholar 

  10. Rosso C et al (2021) Metal-Free Photocatalysis: Two-Dimensional Nanomaterial Connection toward Advanced Organic Synthesis. ACS Nano 15:3621–3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jung JH et al (2016) Defect Engineering Route to Boron Nitride Quantum Dots and Edge-Hydroxylated Functionalization for Bio-Imaging. RSC Adv 6:73939–73946

    Article  CAS  ADS  Google Scholar 

  12. Kumar R, Singh RK, Yadav SK, Savu R, Moshkalev SA (2016) Mechanical Pressure Induced Chemical Cutting of Boron Nitride Sheets into Boron Nitride Quantum Dots and Optical Properties. J Alloys Compd 683:38–45

    Article  CAS  Google Scholar 

  13. Liu B et al (2016) One-Step Synthesis of Boron Nitride Quantum Dots: Simple Chemistry Meets Delicate Nanotechnology. Chem - A Eur J 22:18899–18907

    Article  CAS  Google Scholar 

  14. Zhan Y et al (2019) Targets Regulated Formation of Boron Nitride Quantum Dots – Gold Nanoparticles Nanocomposites for Ultrasensitive Detection of Acetylcholinesterase Activity and its Inhibitors. Sensors Actuators, B Chem 279:61–68

    Article  CAS  Google Scholar 

  15. Zhi CY et al (2009) Chemically Activated Boron Nitride Nanotubes. Chem - An Asian J 4:1536–1540

    Article  CAS  Google Scholar 

  16. Sainsbury T et al (2007) Self-Assembly of Gold Nanoparticles at the Surface of Amine- and Thiol-Functionalized Boron Nitride Nanotubes. J Phys Chem C 111:12992–12999

    Article  CAS  Google Scholar 

  17. Kim D et al (2015) Sonication-Assisted Alcoholysis of Boron Nitride Nanotubes for Their Sidewalls Chemical Peeling. Chem Commun 51:7104–7107

    Article  CAS  Google Scholar 

  18. Golberg D, Bando Y, Tang C, Zni C (2007) Boron Nitride Nanotubes. Adv Mater 19:2413–2432

    Article  CAS  Google Scholar 

  19. Guo F et al (2020) Polar Crystalline Phases of Pvdf Induced by Interaction with Functionalized Boron Nitride Nanosheets. CrystEngComm 22:6207–6215

    Article  CAS  Google Scholar 

  20. Idrees SA, Jamil LA, Omer KM (2021) Fabrication of Novel Metal-Free Phosphorous Doped Boron Nitride as UV. Active Photo-Catalyst Iran J Catal 11:405–416

    CAS  Google Scholar 

  21. He Z et al (2017) Formation of Heterostructures via Direct Growth Cn on H-Bn Porous Nanosheets for Metal-Free Photocatalysis. Nano Energy 42:58–68

    Article  CAS  Google Scholar 

  22. Huang D, Cheng M, Hu L, Xiong W (2018) Semiconductor/Boron Nitride Composites: Synthesis, Properties, and Photocatalysis Applications. Applied Catal B: Environ. https://doi.org/10.1016/j.apcatb.2018.07.011

    Article  Google Scholar 

  23. Tang R et al (2022) Unique g-C3N4/PDI-g-C3N4 Homojunction with Synergistic Piezo-Photocatalytic Effect for Aquatic Contaminant Control and H2O2 Generation Under Visible Light. Appl Catal B Environ 303:120929

    Article  CAS  Google Scholar 

  24. Aquino de Carvalho N et al (2021) Using C-Doping to Identify Photocatalytic Properties of Graphitic Carbon Nitride That Govern Antibacterial Efficacy. ACS ES&T Water 1:269–280

    Article  CAS  Google Scholar 

  25. Mamba G, Mishra AK (2016) Graphitic Carbon Nitride (g-C3N4) Nanocomposites: A New And Exciting Generation of Visible Light Driven Photocatalysts for Environmental Pollution Remediation. Appl Catal B Environ 198:347–377

    Article  CAS  Google Scholar 

  26. Wang Y, Liu L, Ma T, Zhang Y, Huang H (2021) 2D Graphitic Carbon Nitride for Energy Conversion and Storage. Adv Funct Mater 31:1–36

    Google Scholar 

  27. Acharya L, Pattnaik SP, Behera A, Acharya R, Parida K (2021) Exfoliated Boron Nitride (e-BN) Tailored Exfoliated Graphitic Carbon Nitride (e-CN): An Improved Visible Light Mediated Photocatalytic Approach towards TCH Degradation and H2Evolution. Inorg Chem 60:5021–5033

    Article  CAS  PubMed  Google Scholar 

  28. Guo Y, Wang R, Wang P, Rao L, Wang C (2019) Developing a Novel Layered Boron Nitride-Carbon Nitride Composite with High Efficiency and Selectivity to Remove Protonated Dyes from Water. ACS Sustain Chem Eng 7:5727–5741

    Article  CAS  Google Scholar 

  29. Xu H, Wu Z, Wang Y, Lin C (2017) Enhanced Visible-Light Photocatalytic Activity from Graphene-Like Boron Nitride Anchored on Graphitic Carbon Nitride Sheets. J Mater Sci 52:9477–9490

    Article  CAS  ADS  Google Scholar 

  30. Chen T et al (2018) Carbon Nitride Modified Hexagonal Boron Nitride Interface as Highly Efficient Blue LED Light-Driven Photocatalyst. Appl Catal B Environ 238:410–421

    Article  CAS  Google Scholar 

  31. Dong F et al (2013) In situ Construction of g-C3N4/g-C3N4 Metal-Free Heterojunction for Enhanced Visible-Light Photocatalysis. ACS Appl Mater Interfaces 5:11392–11401

    Article  CAS  PubMed  Google Scholar 

  32. Fang HB, Luo Y, Zheng YZ, Ma W, Tao X (2016) Facile Large-Scale Synthesis of Urea-Derived Porous Graphitic Carbon Nitride with Extraordinary Visible-Light Spectrum Photodegradation. Ind Eng Chem Res 55:4506–4514

    Article  CAS  Google Scholar 

  33. Fortman GC, Slawin AMZ, Nolan SP (2011) Highly Active Iridium(iii)-NHC System for the Catalytic B-N Subsequent Solvolysis of Ammonia-Borane. Organometallics 30:5487–5492

    Article  CAS  Google Scholar 

  34. Huang C et al (2013) Stable Colloidal Boron Nitride Nanosheet Dispersion and its Potential Application in Catalysis. J Mater Chem A 1:12192–12197

    Article  CAS  Google Scholar 

  35. Li Q, Shen P, Tian Y, Li X, Chu K (2022) Metal-Free BN Quantum Dots/Graphitic C3N4 Heterostructure for Nitrogen Reduction Reaction. J Colloid Interface Sci 606:204–212

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Cao J et al (2017) Solid-State Method Synthesis of SnO2-Decorated g-C3N4 Nanocomposites With Enhanced Gas-Sensing Property to Ethanol. Materials (Basel) 10:1–14

    Article  Google Scholar 

  37. Fina F, Callear SK, Carins GM, Irvine JTS (2015) Structural Investigation of Graphitic Carbon Nitride via XRD and Neutron Diffraction. Chem Mater 27:2612–2618

    Article  CAS  Google Scholar 

  38. Perry R, C. H. G. (1966) Normal Modes in Hexagonal Boron. PHYSICAL Rev 146:543–547

    Article  ADS  Google Scholar 

  39. Singh B, Kaur G, Singh P, Singh K, Kumar B (2016) Nanostructured Boron Nitride with High Water Dispersibility for Boron Neutron Capture Therapy. Nat Sci Rep. https://doi.org/10.1038/srep35535

    Article  Google Scholar 

  40. Shen T (2019) Highly Efficient Preparation of Hexagonal Boron Nitride by Direct Microwave Heating for Dye Removal. J Mater Sci 54:8852–8859

    Article  CAS  ADS  Google Scholar 

  41. Ortiz DG et al (2018) Exfoliation of Hexagonal Boron Nitride (h-BN) in Liquide Phase by Ion Intercalation To cite this version : HAL Id : hal-01926507 Exfoliation of Hexagonal Boron Nitride (h-BN) in Liquide Phase by Ion Intercalation. MDPI Nanomater. 8:1–12

    CAS  Google Scholar 

  42. Zhai L et al (2019) Cyanate Ester Resin Based Composites with High Toughness and Thermal Conductivity. RSC Adv 9:5722–5730

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Kester DJ, Ailey KS, Davis RF, Carolina N, More KL (1993) Phase Evolution in Boron Nitride Thin Films. Mater Res Soc 8:1213–1216

    Article  CAS  ADS  Google Scholar 

  44. Tang BC, Bando Y, Huang Y, Zhi C, Golberg D (2008) Synthetic Routes and Formation Mechanisms of Spherical Boron Nitride Nanoparticles. Adv Funct Mater 18:3653–3661

    Article  CAS  Google Scholar 

  45. Kim M, Hwang S, Yu JS (2007) Novel Ordered Nanoporous Graphitic C3N4 as a Support for Pt-Ru Anode Catalyst in Direct Methanol Fuel Cell. J Mater Chem 17:1656–1659

    Article  CAS  Google Scholar 

  46. Sunasee S et al (2019) Sonophotocatalytic Degradation of Bisphenol A and its Intermediates with Graphitic Carbon Nitride. Environ Sci Pollut Res 26:1082–1093

    Article  CAS  Google Scholar 

  47. Sudeep PM et al (2015) Functionalized Boron Nitride Porous Solids. RSC Adv 5:93964–93968

    Article  CAS  ADS  Google Scholar 

  48. Luo X, Zhang Y, Zandén Murugesan Cao Ye Liu CMYLJ (2014) Novel Thermal Interface Materials : Boron Nitride Nanofiber and Indium Composites for Electronics Heat Dissipation Applications. Mater Sci Mater Electron 25:2333–2338

    Article  CAS  Google Scholar 

  49. Chen L et al (2017) Thermal Conductivity Performance of Polypropylene Composites Filled with Polydopamine-Functionalized Hexagonal Boron Nitride. PLoS ONE. https://doi.org/10.1371/journal.pone.0170523

    Article  PubMed  PubMed Central  Google Scholar 

  50. Weng Q, Wang X, Wang X, Bando Y, Golberg D (2016) Functionalized Hexagonal Boron Nitride Nanomaterials: Emerging Properties and Applications. Chem Soc Rev 45:3989–4012

    Article  CAS  PubMed  Google Scholar 

  51. Shi X et al (2020) Few-Layer Hydroxyl-Functionalized Boron Nitride Nanosheets for Nanoscale Thermal Management. ACS Appl Nano Mater 3:2310–2321

    Article  CAS  Google Scholar 

  52. Angizi S, Shayeganfar F, Azar MH, Simchi A (2020) Surface/Edge Functionalized Boron Nitride Quantum Dots: Spectroscopic Fingerprint of Bandgap Modification by Chemical Functionalization. Ceram Int 46:978–985

    Article  CAS  Google Scholar 

  53. Han Y, Niu Y, Liu M, Niu F, Xu Y (2019) A Rational Strategy to Develop a Boron Nitride Quantum Dot-Based Molecular Logic Gate and Fluorescent Assay of Alkaline Phosphatase Activity. J Mater Chem B 7:897–902

    Article  CAS  PubMed  Google Scholar 

  54. Schild D, Ulrich S, Ye J, Stüber M (2010) XPS Investigations of Thick, Oxygen-Containing Cubic Boron Nitride Coatings. Solid State Sci 12:1903–1906

    Article  CAS  ADS  Google Scholar 

  55. Qu J, Li Q, Luo C, Cheng J, Hou X (2018) Characterization of Flake Boron Nitride Prepared From the Low Temperature Combustion Synthesized Precursor and its Application for Dye Adsorption. Coatings 8:214

    Article  Google Scholar 

  56. Rastogi PK et al (2019) Graphene-hBN Non-Van Der Waals Vertical Heterostructures for Four- Electron Oxygen Reduction Reaction. Phys Chem Chem Phys 21:3942–3953

    Article  CAS  PubMed  Google Scholar 

  57. Qiao F, Wang J, Ai S, Li L (2015) As A New Peroxidase Mimetics: The Synthesis of Selenium Doped Graphitic Carbon Nitride Nanosheets and Applications on Colorimetric Detection of H2O2 and Xanthine. Sensors Actuators, B Chem 216:418–427

    Article  CAS  Google Scholar 

  58. Guo SN et al (2016) Holey Structured Graphitic Carbon Nitride Thin Sheets with Edge Oxygen Doping via Photo-Fenton Reaction with Enhanced Photocatalytic Activity. Appl Catal B Environ 185:315–321

    Article  CAS  Google Scholar 

  59. Fang J, Fan H, Li M, Long C (2015) Nitrogen Self-Doped Graphitic Carbon Nitride as Efficient Visible Light Photocatalyst for Hydrogen Evolution. J Mater Chem A 3:13819–13826

    Article  CAS  Google Scholar 

  60. Tan L et al (2015) Synthesis of g-C 3 N 4 /CeO 2 Nanocomposites with Improved Catalytic Activity on the Thermal Decomposition of Ammonium Perchlorate. Appl Surf Sci 356:447–453

    Article  CAS  ADS  Google Scholar 

  61. Zhu XD, Wang YJ, Sun RJ, Zhou DM (2013) Photocatalytic Degradation of Tetracycline in Aqueous Solution by Nanosized TiO2. Chemosphere 92:925–932

    Article  CAS  PubMed  ADS  Google Scholar 

  62. Chuang LC, Luo CH, Huang SW, Wu YC, Huang YC (2011) Photocatalytic Degradation Mechanism and Kinetics of Caffeine in Aqueous Suspension of Nano-TiO2. Adv Mater Res 214:97–102

    Article  CAS  Google Scholar 

  63. Reza KM, Kurny A, Gulshan F (2017) Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2: A Review. Appl Water Sci 7:1569–1578

    Article  CAS  ADS  Google Scholar 

  64. Idrees SA, Naman SA, Shorachi A (2018) Kinetic and Thermodynamic Study of Trifluralin Photo-Degradation by Ultra Violet Light. IOP Conf Ser: Mater Sci Eng 454:012045

    Article  Google Scholar 

  65. Chen YW, Hsu YH (2021) Effects of Reaction Temperature on the Photocatalytic Activity of Tio2 with Pd And Cu Cocatalysts. Catalysts 11(8):966

    Article  CAS  Google Scholar 

  66. Idrees SA, Ibrahim MK (2018) Optimization of Congo-Red Photo-Catalytic Degradation by Central Composite Design. Int Conf Adv Sci Eng (ICOASE). https://doi.org/10.1109/ICOASE.2018.8548919

    Article  Google Scholar 

  67. Salim HAM (2018) Photo-Catalytic Degradation of Toluidine Blue Dye in Aqueous Medium Under Fluorescent Light. ICOASE 2018 - Int Conf Adv Sci Eng. https://doi.org/10.1109/ICOASE.2018.8548935

    Article  Google Scholar 

  68. Idrees SA, Salih RN, Bashir K, Hamasaeed AA (2021) Kinetic Study of Congo-Red Photo-Catalytic Degradation in Aqueous Media Using Zinc Oxide as Photo Catalyst Under Led Light. Sci J Univ Zakho 9:20–24

    Article  Google Scholar 

  69. Molla-Babaker MM, Idreesb SA (2020) Degradation of Congo Red Dye Using Homogeneous Photo Fenton Catalyst Coupled with Oxygen Kinetics and Statistical Analysis. Asian J Appl Chem Res 6:1–9

    Article  Google Scholar 

  70. Mohammed R, Ahmed S, Abdulrahman A, Hamad S (2020) Synthesis and Characterizations of ZnO Thin Films Grown by Physical Vapor Deposition Technique. J Appl Sci Technol Trends 1:135–139

    Article  Google Scholar 

  71. Dia L, Yanga H, Xian T, Chen X (2018) Enhanced Photocatalytic Degradation Activity of BiFeO3 Microspheres by Decoration with g-C3 N4 Nanoparticles. Mater Res. https://doi.org/10.1590/1980-5373-mr-2018-0081

    Article  Google Scholar 

  72. Shenoy S, Tarafder K (2020) Enhanced Photocatalytic Efficiency of Layered Cds/Cdse Heterostructures: Insights from First Principles Electronic Structure Calculations. J Phys Condens Matter 32:8–14

    Article  Google Scholar 

  73. Pirhashemi M, Habibi-Yangjeh A (2016) Ultrasonic-Assisted Preparation of Plasmonic ZnO/Ag/Ag2WO4 Nanocomposites with High Visible-Light Photocatalytic Performance for Degradation of Organic Pollutants. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2016.12.044

    Article  PubMed  Google Scholar 

  74. Du J et al (2021) The Research on the Construction and the Photocatalytic Performance of BiOI/NH2-MIL-125(Ti) Composite. Catalysts 125:1–15

    Google Scholar 

  75. Idrees SA, Jamil LA, Omer KM (2022) Silver-Loaded Carbon and Phosphorous Co-Doped Boron Nitride Quantum Dots (Ag@CP-BNQDs) for Efficient Organic Waste Removal: Theoretical and Experimental Investigations. ACS Omega. https://doi.org/10.1021/acsomega.2c04480

    Article  PubMed  PubMed Central  Google Scholar 

  76. Naher MI, Naqib SH (2021) A Comprehensive Study of the Thermophysical and Optoelectronic Properties of Nb2P5 via Ab-Initio Technique. Results Phys 28:104623

    Article  Google Scholar 

  77. Naher MI, Naqib SH (2022) Possible Applications of Mo2C in the Orthorhombic and Hexagonal Phases Explored via Ab-Initio Investigations of Elastic, Bonding, Optoelectronic and Thermophysical Properties. Results Phys 37:105505

    Article  Google Scholar 

  78. Helmy M, Aziz A, Zakaria E, Ashtoukhy E, Bassyouni M (2020) DFT and Experimental Study on Adsorption of Dyes on Activated Carbon Prepared from Apple Leaves. Carbon Lett. 31(5):863–878. https://doi.org/10.1007/s42823-020-00187-1

    Article  Google Scholar 

  79. Mandal A et al (2021) Fixed-Bed Column Study for Removal of Phenol by Neem Leaves – Experiment, MLR and ANN Analysis. Sustain Chem Pharm 23:100514

    Article  CAS  Google Scholar 

  80. Nwankwo HU, Olasunkanmi LO, Ebenso EE (2017) Experimental, Quantum Chemical and Molecular Dynamic Simulations Studies on the Corrosion Inhibition of Mild Steel by Some Carbazole Derivatives. Sci Rep 7:1–18

    Article  CAS  ADS  Google Scholar 

  81. Idrees SA, Jamil LA, Omer KM (2023) Efficient Photo-Fenton Catalysis Using Magnetic Iron Nanoparticles Decorated Boron Nitride Quantum Dots: Theoretical and Experimental Investigations. RSC Adv 13:6779–6792

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  82. AbdElAziz HH, Taha M, El Rouby WMA, Khedr MH, Saad L (2022) Evaluating the Performance of Cs2PtI6−xBrx for Photovoltaic and Photocatalytic Applications Using First-Principles Study and SCAPS-1D Simulation. Heliyon 8:e10808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kora HH, Taha M, Abdelwahab A, Farghali AA, El-Dek SI (2020) Effect of Pressure on the Geometric, Electronic Structure, Elastic, and Optical Properties of the Normal Spinel mgfe2o4: A first-Principles Study. Mater Re. Express 7:1–11

    Google Scholar 

  84. Liton MNH et al (2021) Electronic, Mechanical, Optical and Photocatalytic Properties of Perovskite RbSr2Nb3O10 Compound. J Alloys Compd 867:159077

    Article  CAS  Google Scholar 

  85. Chakraborty A, Liton MNH, Sarker MSI, Rahman MM, Khan MKR (2023) A Comprehensive DFT Evaluation of Catalytic and Optoelectronic Properties of BaTiO3 Polymorphs. Phys B Condens. Matter 648:414418

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the Ministry of Higher education and Scientific research in Kurdistan and the University of Zakho for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinwar A. Idrees.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3152 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idrees, S.A., Jamil, L.A., Hama Aziz, K.H. et al. Synergetic Photocatalytic Activity of Metal-Free Boron Nitride Quantum Dots and Graphitic Carbon Nitride: Harnessing Visible Light for Organic Waste Elimination–A Theoretical and Experimental Approach. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04628-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04628-8

Keywords

Navigation