Skip to main content
Log in

Facile Shaping Mixed-valence Pd0/IIO Nanoparticles in Al3+ Crosslinked Carboxymethylcellulose Microspheres for Catalytic Aminocarbonylations

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A mixed-valence Pd0/IIO nanocomposite microsphere (Pd0/IIONPs@CMC–Al) was prepared by Al3+ ion crosslinked carboxymethylcellulose (CMC) procedure using PdO nanoparticles (NPs) and sodium carboxymethylcellulose in an Al(NO3)3 solution. As evidenced by X-ray photoelectron spectroscopy (XPS), the Pd0 was generated in situ on the surface of PdO NPs through the reduction of CMC in the formation of composite microspheres. The identity of the as-prepared Pd0/IIONPs@CMC–Al microsphere was fully verified using various techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray analysis (EDX), elemental mappings, and thermogravimetric analysis (TGA). The composite microsphere was found to be effective in the aminocarbonylations of various iodobenzenes with different benzyl amines, resulting in moderate to good yields of the desirable products using phenyl formate as a simple and efficient CO surrogate. The microsphere can be easily recovered through simple filtration and can be recycled for up to five consecutive runs without losing its activity. The advantages include the ease of handling the catalyst, no additional reducing agent required, simple workup procedure, tolerance for a wide range of functional groups, and effective catalyst recyclability, all of which enhances its practical applicability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Allen CL, Williams JM (2011) Chem Soc Rev 40:3405–3415

    Article  CAS  PubMed  Google Scholar 

  2. Schoenberg A, Heck R (1974) J Org Chem 39:3327–3331

    Article  CAS  Google Scholar 

  3. Abdulla Afsina CM, Philip RM, Saranya PV et al (2022) Curr Org Synth 20:308–331

    Google Scholar 

  4. Picard B, Fukuyama T, Ryu I (2023) J Org Chem 88:5220–5225

    Article  CAS  PubMed  Google Scholar 

  5. Wang P, Yang J, Sun K et al (2022) Org Chem Front 9:2491–2497

    Article  CAS  Google Scholar 

  6. Richardson J, Rilvin-Derrick E, Oram N (2020) Synlett 31:369–372

    Article  Google Scholar 

  7. Collin HP, Reis WJ, Nielsen DU (2019) Org Lett 21:5775–5778

    Article  CAS  PubMed  Google Scholar 

  8. Messa F, Perrone S, Capua M et al (2018) Chem Commun 54:8100–8103

    Article  CAS  Google Scholar 

  9. Wang DL, Liu H, Yang D et al (2017) ChemCatChem 9:4206–4211

    Article  CAS  Google Scholar 

  10. Zhang C, Liu J, Xia C (2014) Org Biomol Chem 12:9702–9706

    Article  CAS  PubMed  Google Scholar 

  11. Xu T, Alper H (2013) Tetrahedron Lett 54:5496–5499

    Article  CAS  Google Scholar 

  12. Sengupta M, Das S, Bhattacharya S et al (2022) Mol Catal 522:112212

    Article  CAS  Google Scholar 

  13. Shaifali S, Bains R et al (2020) Org Biomol Chem 18:7193–7200

    Article  CAS  PubMed  Google Scholar 

  14. Mart M, Tylus W, Trzeciak AM (2019) Mol Catal 462:28–36

    Article  CAS  Google Scholar 

  15. Lei Y, Wan Y, Li G et al (2017) Mater Chem Front 1:1541–1549

    Article  CAS  Google Scholar 

  16. Hu Q, Wang L, Wang C et al (2017) RSC Adv 7:37200–37207

    Article  ADS  CAS  Google Scholar 

  17. Mane RS, Sasaki T, Bhanage BM (2015) RSC Adv 5:94776–94785

    Article  ADS  CAS  Google Scholar 

  18. Nejad MJ, Shariatipour M, Heydari A (2023) Catal Lett 153:1957–1973

    Article  Google Scholar 

  19. Dang TT, Zhu Y, Ngiam JSY et al (2013) ACS Catal 3:1406–1410

    Article  CAS  Google Scholar 

  20. Khedkar MV, Sasaki T, Bhanage BM (2013) ACS Catal 3:287–293

    Article  CAS  Google Scholar 

  21. Qureshi ZS, Revankar SA, Khedkar MV et al (2012) Catal Today 198:148–153

    Article  CAS  Google Scholar 

  22. Tinnis F, Verho O, Gustafson KPJ et al (2014) Chem Eur J 20:5885–5889

    Article  CAS  PubMed  Google Scholar 

  23. Biying AO, Yuanting KT, Hosmane NS et al (2013) J Organomet Chem 747:184–188

    Article  CAS  Google Scholar 

  24. Zhang Y, Sun H, Zhang W, Gao Z et al (2015) Appl Catal A-Gen 496:9–16

    Article  CAS  Google Scholar 

  25. Urbána B, Pappa M, Srankó D et al (2015) J Mol Catal A-Chem 397:150–157

    Article  Google Scholar 

  26. Seok S, Hussain MA, Park KJ et al (2016) Ultrason Sonochem 8:178–184

    Article  Google Scholar 

  27. Lakshminarayana B, Mahendar L, Ghosal P et al (2017) ChemistrySelect 2:2703–2710

    Article  Google Scholar 

  28. Lu X, Yu Q, Tao X et al (2021) Colloid Surfaces A 610:125914

    Article  CAS  Google Scholar 

  29. Okumura K, Mushiake T, Matsui Y et al (2015) ChemPhysChem 16:1719–1726

    Article  CAS  PubMed  Google Scholar 

  30. Ohtaka A, Teratani T, Fujii R et al (2011) J Org Chem 76:4052–4060

    Article  CAS  PubMed  Google Scholar 

  31. Teratani T, Ohtaka A, Kawashima T et al (2010) Synlett 15:2271–2274

    Google Scholar 

  32. Sadhasivam V, Balasaravanan R, Siva A (2019) Appl Organometal Chem 33:e4994

    Article  Google Scholar 

  33. Rahman MS, Hasan MS, Nitai AS et al (2021) Polymers 13:1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xiao J, Lu Z, Li Y (2015) Ind Eng Chem Res 54:790–797

    Article  CAS  Google Scholar 

  35. Xiao J, Lu Z, Li Z et al (2015) Appl Organometal Chem 29:646–652

    Article  CAS  Google Scholar 

  36. Ueda T, Konishi H, Manabe K (2012) Org Lett 14:3100–3103

    Article  CAS  PubMed  Google Scholar 

  37. Fujihara T, Hosoki T, Katafuchi Y et al (2012) Chem Commun 48:8012–8014

    Article  CAS  Google Scholar 

  38. Arora K, Srivastava S, Solanki PR et al (2019) IEEE Sens J 19:8262–8271

    Article  ADS  CAS  Google Scholar 

  39. Tan L, Li H, Liu M (2018) RSC Adv 8:12870–12878

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang Z, Song P, Zhou J et al (2016) Ind Eng Chem Res 55:12301–12308

    Article  CAS  Google Scholar 

  41. Wang TJ, Li FM, Huang H et al (2020) Adv Funct Mater 30:2000534

    Article  CAS  Google Scholar 

  42. Kozlica DK, Kokalj A, Milošev I (2021) Corros Sci 182:109082

    Article  CAS  Google Scholar 

  43. Zhang L, Ding LX, Luo Y et al (2018) Chem Eng J 347:193–201

    Article  CAS  Google Scholar 

  44. Barkhordari S, Yadollahi M (2016) App Clay Sci 121–122:77–85

    Article  Google Scholar 

  45. Calegari F, da Silva BC, Tedim J et al (2020) Prog Org Coat 138:105329

    Article  CAS  Google Scholar 

  46. Konishi H, Matsubara M, Mori K et al (2017) Adv Synth Catal 359:3592–3601

    Article  CAS  Google Scholar 

  47. Ozawa F, Kawasaki N, Okamoto H et al (1987) Organometallics 6:1640–1651

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Guangdong Province (No. 2020A1515010399).

Author information

Authors and Affiliations

Authors

Contributions

YZ and LX Investigation, Methodology, Validation, Writing-original draft. YH and YQ Investigation, Methodology. YL Conceptualization, Resources, Writing-review & editing, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Yiqun Li.

Ethics declarations

Conflict of interest

No conflict of interest.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6536 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Xiao, L., Huang, Y. et al. Facile Shaping Mixed-valence Pd0/IIO Nanoparticles in Al3+ Crosslinked Carboxymethylcellulose Microspheres for Catalytic Aminocarbonylations. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04625-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04625-x

Keywords

Navigation