Skip to main content
Log in

Construction and Characterization of Magnetic Fe3O4 Nanoparticles Supported Zn Complex: Research on Multicomponent Synthesis of Highly Functionalized Piperidines

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In recent times, the research on the synthesis of highly functionalized piperidines has become a challenge and an attractive research field among synthetic chemists because these compounds have many biological, pharmaceutical and industrial applications. In this regard, in this paper we would like to report a green, rapid and efficient method for the synthesis of highly functionalized piperidines based on the use of zinc (II) chloride supported on Fe3O4 NPs modified with Dopamine and 5H-Cyclopenta[2,1-b:3,4-b′]dipyridin-5-one [Fe3O4@Dop/CP-diPy-ZnCl2 as a novel magnetically reusable catalyst. The structure of Fe3O4@Dop/CP-diPy-ZnCl2 nanocatalyst was well identified by several spectroscopic techniques including: FT-IR, TEM, SEM, EDX, ICP-OES, TGA, XRD, VSM and Elemental mapping technique. One-pot three-component reactions of aromatic amines with different aryl aldehydes and β-ketoesters were performed in water and all desired highly functionalized piperidines were synthesized with high to excellent yields, which indicates the high efficiency of this catalytic system. The reusability tests shown that that Fe3O4@Dop/CP-diPy-ZnCl2 catalyst is a reusable and stable catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Das S, Santra S, Roy A et al (2012) One-pot multicomponent synthesis of polyhydroquinolines under catalyst and solvent-free conditions. Green Chem Lett Rev 5:97–100. https://doi.org/10.1080/17518253.2011.584073

    Article  CAS  Google Scholar 

  2. Kazemi M (2023) Copper catalysts immobilized on magnetic nanoparticles: catalysis in synthesis of tetrazoles. Nanomater Chem 1:1–11. https://doi.org/10.22034/nc.2023.416867.1003

    Article  Google Scholar 

  3. Khan AT, Khan MM, Bannuru KKR (2010) Iodine catalyzed one-pot five-component reactions for direct synthesis of densely functionalized piperidines. Tetrahedron 66:7762–7772. https://doi.org/10.1016/j.tet.2010.07.075

    Article  CAS  Google Scholar 

  4. NooryFajer A, KhabtAboud H, Al-Bahrani HA, Kazemi M (2023) Recent advances on multicomponent synthesis of pyranopyrazoles using magnetically recoverable nanocatalysts. Polycycl Aromat Compd. https://doi.org/10.1080/10406638.2023.2255723

    Article  Google Scholar 

  5. Bhat AR, Shalla AH, Dongre RS (2017) Synthesis of new annulated pyrano[2,3-d]pyrimidine derivatives using organo catalyst (DABCO) in aqueous media. J Saudi Chem Soc 21:S305–S310. https://doi.org/10.1016/j.jscs.2014.03.008

    Article  CAS  Google Scholar 

  6. Wan Q, Huang CY, Hou ZW et al (2023) Organophotoelectrochemical silylation cyclization for the synthesis of silylated 3-CF 3–2-oxindoles. Org Chem Front. https://doi.org/10.1039/D3QO00728F

    Article  Google Scholar 

  7. Chen D, Wang Q, Li Y et al (2020) A general linear free energy relationship for predicting partition coefficients of neutral organic compounds. Chemosphere 247:125869. https://doi.org/10.1016/j.chemosphere.2020.125869

    Article  CAS  PubMed  ADS  Google Scholar 

  8. He B, Hou F, Ren C et al (2021) A review of current in silico methods for repositioning drugs and chemical compounds. Front Oncol. https://doi.org/10.3389/fonc.2021.711225

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kazemi M, Karezani N (2023) Research on biological and bioactive molecules containing pyrrole scaffolds. Biol Mol Chem 1:15–26. https://doi.org/10.22034/bmc.2023.414945.1003

    Article  Google Scholar 

  10. Zhang Y, Song N (2023) Co3O4 nanocatalyst: a useful heterogeneous catalyst for the synthesis of chloroquine in the treatment of malaria. Biol Mol Chem 1:53–60. https://doi.org/10.22034/bmc.2023.418539.1008

    Article  Google Scholar 

  11. Chen Y, Zhang Z, Jiang W et al (2019) RuIII@CMC/Fe3O4 hybrid: an efficient, magnetic, retrievable, self-organized nanocatalyst for green synthesis of pyranopyrazole and polyhydroquinoline derivatives. Mol Divers 23:421–442. https://doi.org/10.1007/s11030-018-9887-3

    Article  CAS  PubMed  Google Scholar 

  12. Moghadasi Z, NooryFajer A, Abudken MHA, Ali Al-Bahrani H (2023) One-pot three-component synthesis of 2-substituted benzothiazoles using Fe3O4 nanoparticles modified with serine supported Cu (I) iodide. Nanomater Chem 1:24–31. https://doi.org/10.22034/nc.2023.419246.1006

    Article  Google Scholar 

  13. Zhang Z, Zhang W, Hou ZW et al (2023) Electrophilic halospirocyclization of N-benzylacrylamides to access 4-halomethyl-2-azaspiro[4.5]decanes. J Org Chem 88:13610–13621. https://doi.org/10.1021/acs.joc.3c01315

    Article  CAS  PubMed  Google Scholar 

  14. Dadaei M, Naeimi H (2021) Nano cobalt ferrite encapsulated-silica particles bearing melamine as an easily recyclable catalyst for the synthesis of dihydropyrano[2,3- c ]pyrazoles under green conditions. Appl Organomet Chem. https://doi.org/10.1002/aoc.6365

    Article  Google Scholar 

  15. Mishra S, Karabiyikoglu S, Fletcher SP (2023) Catalytic enantioselective synthesis of 3-piperidines from arylboronic acids and pyridine. J Am Chem Soc 145:14221–14226. https://doi.org/10.1021/jacs.3c05044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Frolov NA, Vereshchagin AN (2023) Piperidine derivatives: recent advances in synthesis and pharmacological applications. Int J Mol Sci 24:2937. https://doi.org/10.3390/ijms24032937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nairoukh Z, Wollenburg M, Schlepphorst C et al (2019) The formation of all-cis-(multi)fluorinated piperidines by a dearomatization–hydrogenation process. Nat Chem 11:264–270. https://doi.org/10.1038/s41557-018-0197-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Paudel S, Wang S, Kim E et al (2022) Design, synthesis, and functional evaluation of 1, 5-disubstituted tetrazoles as monoamine neurotransmitter reuptake inhibitors. Biomol Ther 30:191–202. https://doi.org/10.4062/BIOMOLTHER.2021.119

    Article  CAS  Google Scholar 

  19. Aboonajmi J, Mousavi MR, Maghsoodlou MT et al (2015) ZrCl4 as an efficient catalyst for one-pot synthesis of highly functionalized piperidines via multi-component organic reactions. Res Chem Intermed 41:1925–1934. https://doi.org/10.1007/s11164-013-1320-z

    Article  CAS  Google Scholar 

  20. Agrawal NR, Bahekar SP, Sarode PB et al (2015) L-proline nitrate: a recyclable and green catalyst for the synthesis of highly functionalized piperidines. RSC Adv 5:47053–47059. https://doi.org/10.1039/c5ra08022c

    Article  CAS  ADS  Google Scholar 

  21. GhamariKargar P, Bagherzade G (2021) Robust, highly active, and stable supported Co(ii) nanoparticles on magnetic cellulose nanofiber-functionalized for the multi-component reactions of piperidines and alcohol oxidation. RSC Adv 11:23192–23206. https://doi.org/10.1039/d1ra00208b

    Article  CAS  ADS  Google Scholar 

  22. Sajadikhah SS, Hazeri N, Maghsoodlou MT et al (2012) One-pot three-component synthesis of highly substituted piperidines using 1-methyl-2-oxopyrrolidinium hydrogen sulfate. J Chem Res 36:463–467. https://doi.org/10.3184/174751912X13395258340271

    Article  CAS  Google Scholar 

  23. Yan L, Li Y, Yang B, Gao W (2022) InBr 3-catalyzed synthesis of highly functionalized piperidines and benzo[a]pyrano[2,3-c] phenazines. Polycycl Aromat Compd 42:534–542. https://doi.org/10.1080/10406638.2020.1744026

    Article  CAS  Google Scholar 

  24. Luo N, Wang S, Zhang Y et al (2020) DBU-promoted cascade selective nucleophilic addition/c-c bond cleavage/hetero-diels-alder reactions of 2-amino-4 h-chromen-4-ones with β-nitrostyrenes and/or aryl aldehydes: access to 5 h-chromeno[2,3- b]pyridin-5-ones. J Org Chem 85:14219–14228. https://doi.org/10.1021/acs.joc.0c01993

    Article  CAS  PubMed  Google Scholar 

  25. Hazeri N, Fereidooni E (2015) Trichloroacetic acid as an efficient catalyst for one-pot synthesis of highly functionalized piperidines via multi-component reaction. J Appl Chem Res 9:81–89

    Google Scholar 

  26. Khan AT, Parvin T, Choudhury LH (2008) Effects of substituents in the β-position of 1,3-dicarbonyl compounds in bromodimethylsulfonium bromide-catalyzed multicomponent reactions: a facile access to functionalized piperidines. J Org Chem 73:8398–8402. https://doi.org/10.1021/jo8014962

    Article  CAS  PubMed  Google Scholar 

  27. Ardakani LS, Arabmarkadeh A, Kazemi M (2021) Multicomponent synthesis of highly functionalized piperidines. Synth Commun 51:856–879. https://doi.org/10.1080/00397911.2020.1861301

    Article  CAS  Google Scholar 

  28. Khan AT, Lal M, Khan MM (2010) Synthesis of highly functionalized piperidines by one-pot multicomponent reaction using tetrabutylammonium tribromide (TBATB). Tetrahedron Lett 51:4419–4424. https://doi.org/10.1016/j.tetlet.2010.06.069

    Article  CAS  Google Scholar 

  29. Mousavi MR, Aboonajmi J, Maghsoodlou MT et al (2013) ChemInform abstract: La(NO 3) 3 ·6H 2 O catalyzed one-pot highly diastereoselective synthesis of functionalized piperidines. ChemInform. https://doi.org/10.1002/chin.201340152

    Article  Google Scholar 

  30. Shen J, Gao Q, Wang G et al (2019) Cu-NHC-catalyzed enantioselective conjugate silyl addition to indol-1-ylacrylate derivatives. ChemistrySelect 4:11358–11361. https://doi.org/10.1002/slct.201903570

    Article  CAS  Google Scholar 

  31. Arabmarkadeh A, Javahershenas R, Kazemi M (2021) Nanomaterials: catalysis in synthesis of highly substituted heterocycles. Synth Commun 51:880–903. https://doi.org/10.1080/00397911.2020.1864646

    Article  CAS  Google Scholar 

  32. Yang S, Wu C, Zhou H et al (2013) An Ullmann C–O coupling reaction catalyzed by magnetic copper ferrite nanoparticles. Adv Synth Catal 355:53–58. https://doi.org/10.1002/adsc.201200600

    Article  CAS  Google Scholar 

  33. Jdanova S, Taylor MS (2023) Mechanistic study of the copper(II)-mediated site-selective O -arylation of glycosides with arylboronic acids. J Org Chem 88:3487–3498. https://doi.org/10.1021/acs.joc.2c02693

    Article  CAS  PubMed  Google Scholar 

  34. Rafiee T, Zolfaghari Z (2022) Preparation and study of surface modified ZnO nanoparticles in copoly (amid-imide) nanocomposite films containing triptycene. J Synth Chem 1:108–115. https://doi.org/10.22034/jsc.2022.155237

    Article  Google Scholar 

  35. Nakhate AV, Yadav GD (2017) Solvothermal synthesis of CuFe 2 O 4 @rGO: efficient catalyst for C-O cross coupling and N- arylation reaction under ligand-free condition. ChemistrySelect 2:7150–7159. https://doi.org/10.1002/slct.201700556

    Article  CAS  Google Scholar 

  36. Cheng Q, Cao G, Bai Y et al (2023) Probing the demulsification mechanism of emulsion with SPAN series based on the effect of solid phase particles. Molecules 28:3261. https://doi.org/10.3390/molecules28073261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kazemi N, MahdaviShahri M (2017) Magnetically separable and reusable CuFe2O4 spinel nanocatalyst for the O-arylation of phenol with aryl halide under ligand-free condition. J Inorg Organomet Polym Mater 27:1264–1273. https://doi.org/10.1007/s10904-017-0574-0

    Article  CAS  Google Scholar 

  38. Li H, Wang Y, Jiang F et al (2023) A dual-function [Ru(bpy) 3 ] 2+ encapsulated metal organic framework for ratiometric Al 3+ detection and anticounterfeiting application. Dalt Trans 52:3846–3854. https://doi.org/10.1039/D2DT03388G

    Article  CAS  Google Scholar 

  39. Paul S, Pradhan K, Ghosh S et al (2014) Magnetically retrievable nano crystalline nickel ferrite-catalyzed aerobic, ligand-free C–N, C–O and C–C cross-coupling reactions for the synthesis of a diversified library of heterocyclic molecules. Adv Synth Catal 356:1301–1316. https://doi.org/10.1002/adsc.201300686

    Article  CAS  Google Scholar 

  40. Gong X, Shen Z, Wang G et al (2021) Heterogeneous copper-catalyzed synthesis of diaryl sulfones. Org Biomol Chem 19:10662–10668. https://doi.org/10.1039/D1OB01830B

    Article  CAS  PubMed  Google Scholar 

  41. Ghobakhloo F, Azarifar D, Mohammadi M et al (2022) Copper(II) Schiff-base complex modified UiO-66-NH2(Zr) metal-organic framework catalysts for knoevenagel condensation-michael addition-cyclization reactions. Inorg Chem 61:4825–4841. https://doi.org/10.1021/acs.inorgchem.1c03284

    Article  CAS  PubMed  Google Scholar 

  42. Fajer AN, Al-Bahrani HA, Kadhum AAH, Kazemi M (2024) Research on catalytic application of Fe3O4@AAPA-AP-CuCl2 nanocomposite: first nanomagnetic copper catalyst for preparation of aryl nitriles from aldehydes. J Mol Struct 1296:136800. https://doi.org/10.1016/j.molstruc.2023.136800

    Article  CAS  Google Scholar 

  43. Kazemi M (2020) Based on magnetic nanoparticles: gold reusable nanomagnetic catalysts in organic synthesis. Synth Commun 50:2079–2094. https://doi.org/10.1080/00397911.2020.1725058

    Article  CAS  Google Scholar 

  44. Sun L, Liang T, Zhang C, Chen J (2023) The rheological performance of shear-thickening fluids based on carbon fiber and silica nanocomposite. Phys Fluids. https://doi.org/10.1063/5.0138294

    Article  Google Scholar 

  45. Ghobadi M (2022) Based on copper ferrite nanoparticles (CuFe2O4 NPs): catalysis in synthesis of heterocycles. J Synth Chem 1:84–96. https://doi.org/10.22034/jsc.2022.155234

    Article  Google Scholar 

  46. Shinde G, Thakur J (2022) Magnetically recyclable Ag@Fe2O3 Core-shell nanostructured catalyst for one-pot synthesis of 2-aryl benzimidazole and benzothiazole. Curr Organocatal 9:237–251. https://doi.org/10.2174/2213337209666220329125047

    Article  CAS  Google Scholar 

  47. Rostami A, Pourshiani O, Navasi Y et al (2017) Magnetic nanoparticle-supported DABCO tribromide: a versatile nanocatalyst for the synthesis of quinazolinones and benzimidazoles and protection/deprotection of hydroxyl groups. New J Chem 41:9033–9040. https://doi.org/10.1039/C7NJ00479F

    Article  CAS  Google Scholar 

  48. Mohammadi M, Khodamorady M, Tahmasbi B et al (2021) Boehmite nanoparticles as versatile support for organic–inorganic hybrid materials: Synthesis, functionalization, and applications in eco-friendly catalysis. J Ind Eng Chem 97:1–78. https://doi.org/10.1016/j.jiec.2021.02.001

    Article  CAS  Google Scholar 

  49. Shamaei A, Mahmoudi B, Kazemnejadi M, Nasseri MA (2020) Mg-catalyzed one-pot preparation of benzimidazoles and spirooxindoles by an immobilized chlorophyll b on magnetic nanoparticles. Appl Organomet Chem. https://doi.org/10.1002/aoc.5997

    Article  Google Scholar 

  50. Anjaneyulu B, Dharma Rao GB, Nagakalyan S (2021) Synthesis and DFT studies of 1,2-disubstituted benzimidazoles using expeditious and magnetically recoverable CoFe2O4/Cu(OH)2 nanocomposite under solvent-free condition. J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2021.101394

    Article  Google Scholar 

  51. Kazemi M, Mohammadi M (2020) Magnetically recoverable catalysts: catalysis in synthesis of polyhydroquinolines. Appl Organomet Chem 34:e5400. https://doi.org/10.1002/aoc.5400

    Article  CAS  Google Scholar 

  52. Mohammadi M, Ghorbani-Choghamarani A (2022) A novel Hercynite-supported tetradentate Schiff base complex of manganese catalyzed one-pot annulation reactions. Appl Organomet Chem 36:e6905. https://doi.org/10.1002/aoc.6905

    Article  CAS  Google Scholar 

  53. Zhao Y (2022) Co-precipitated Ni/Mn shell coated nano Cu-rich core structure: a phase-field study. J Mater Res Technol 21:546–560. https://doi.org/10.1016/j.jmrt.2022.09.032

    Article  MathSciNet  CAS  Google Scholar 

  54. Borade RM, Kale SB, Tekale SU et al (2021) Cobalt ferrite magnetic nanoparticles as highly efficient catalyst for the mechanochemical synthesis of 2-aryl benzimidazoles. Catal Commun 159:106349. https://doi.org/10.1016/j.catcom.2021.106349

    Article  CAS  Google Scholar 

  55. Shah Hosseini M, Ghafuri H, EsmailiZand HR (2018) 4,5-Imidazoledicarboxylic acid immobilized on Fe 3 O 4 magnetic nanoparticles: Preparation, characterization, and application as a recyclable and efficient nanocatalyst in the sonochemical condensation reaction. J Chinese Chem Soc 65:850–855. https://doi.org/10.1002/jccs.201700455

    Article  CAS  Google Scholar 

  56. Dezfoolinezhad E, Ghodrati K, Badri R (2016) Fe 3 O 4 @SiO 2 @polyionene/Br 3−core–shell–shell magnetic nanoparticles: a novel catalyst for the synthesis of imidazole derivatives under solvent-free conditions. New J Chem 40:4575–4587. https://doi.org/10.1039/C5NJ02680F

    Article  CAS  Google Scholar 

  57. Kazemi M (2020) Magnetically reusable nanocatalysts in biginelli synthesis of dihydropyrimidinones (DHPMs). Synth Commun 50:1409–1445. https://doi.org/10.1080/00397911.2020.1720740

    Article  CAS  Google Scholar 

  58. Norouzi M, Noormoradi N, Mohammadi M (2023) Nanomagnetic tetraaza (N4 Donor) macrocyclic schiff base complex of copper(II): synthesis, characterizations, and its catalytic application in click reaction. Nanoscale Adv. https://doi.org/10.1039/D3NA00580A

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mousavi-Mashhadi SA, Shiri A (2021) On-water and efficient ullmann-type O-arylation cross coupling reaction of phenols and aryl tosylates in the presence of Fe 3 O 4 @starch-Au as nanocatalyst. ChemistrySelect 6:3941–3951. https://doi.org/10.1002/slct.202004327

    Article  CAS  Google Scholar 

  60. Mazraati A, Setoodehkhah M, Moradian M (2023) Synthesis of copper(II) Schiff base complex immobilized on magnetite-silica nanoparticles and using as a reusable catalyst for the synthesis of 1-amidoalkyl-2-naphthols under ultrasonic conditions. J Clust Sci. https://doi.org/10.1007/s10876-023-02456-1

    Article  Google Scholar 

  61. Li W, Yan J, Xu W, Zhang LY (2023) Magnetic nanoparticles modified with a copper( <scp>i</scp> ) complex as a novel and efficient reusable catalyst for A 3 coupling leading to C–N bond formation. RSC Adv 13:28964–28974. https://doi.org/10.1039/D3RA04871C

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  62. Bertolucci E, Galletti AMR, Antonetti C et al (2015) Chemical and magnetic properties characterization of magnetic nanoparticles. 2015 IEEE international instrumentation and measurement technology conference (I2MTC) proceedings. IEEE, pp 1492–1496

    Chapter  Google Scholar 

  63. RasulMousavi M, Aboonajmi J, TaherMaghsoodlou M et al (2013) La(NO3)3.6H2O catalyzed one-pot highly diastereoselective synthesis of functionalized piperidines. Lett Org Chem 10:171–177. https://doi.org/10.2174/1570178611310030005

    Article  Google Scholar 

  64. Khan MM, Khan S, Iqbal S et al (2016) Synthesis of functionalized dihydro-2-oxypyrroles and tetrahydropyridines using 2,6-pyridinedicarboxylic acid as an efficient and mild organocatalyst. New J Chem 40:7504–7512. https://doi.org/10.1039/C6NJ01170E

    Article  CAS  Google Scholar 

  65. Brahmachari G, Das S (2012) Bismuth nitrate-catalyzed multicomponent reaction for efficient and one-pot synthesis of densely functionalized piperidine scaffolds at room temperature. Tetrahedron Lett 53:1479–1484. https://doi.org/10.1016/j.tetlet.2012.01.042

    Article  CAS  Google Scholar 

  66. Aboonajmi J, Maghsoodlou MT, Hazeri N et al (2015) Tartaric acid: a natural, green and highly efficient catalyst for the one-pot synthesis of functionalized piperidines. Res Chem Intermed 41:8057–8065

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao Yan Xia or Li Yan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7091 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Z.Y., Wei, W. & Zhang, L.Y. Construction and Characterization of Magnetic Fe3O4 Nanoparticles Supported Zn Complex: Research on Multicomponent Synthesis of Highly Functionalized Piperidines. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04580-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04580-7

Keywords

Navigation