Skip to main content
Log in

Ru-modified Octahedral Manganese Oxide Molecular Sieve (Ru-OMS-2) as a Reusable Heterogeneous Catalyst in Selective Oxidation of Olanzapine and Other Polycyclic Compounds

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Manganese oxide octahedral molecular sieve (OMS-2) nano-rods were synthesized in the presence of HNO3 and then ion-exchanged with Ru3+ to obtain Ru-modified scaffolds abbreviated as Ru-OMS-2. Various techniques including X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), energy dispersive X-Ray spectroscopy (EDS), X-Ray photoelectron spectroscopy (XPS), and EDS mapping analysis were used to characterize the structure of the obtained product. Ru-OMS-2 was then used as a reusable heterogeneous catalyst in the selective oxidation of polycyclic aromatic hydrocarbons and heterocyclic compounds such as olanzapine and benzothiophene in an aqueous solution. Under mild reaction conditions, excellent yields of the desired products (10 examples, 55–99% yield) were obtained with high selectivity, and the catalyst retained activity for several consecutive cycles with a reasonable loss of activity (7.5% after 10 runs).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1

Similar content being viewed by others

Data Availability

All of the data presented would be available on request.

References

  1. Suib SL (2008) J Mater Chem 18(14):1623–1631

    Article  CAS  Google Scholar 

  2. Son YC, Makwana VD, Howell AR, Suib SL (2001) Angew Chem Int Ed 40(22):4280–4283

    Article  CAS  Google Scholar 

  3. Bastos S, Órfão J, Freitas M, Pereira M, Figueiredo J (2009) Appl Catal B 93(1–2):30–37

    Article  CAS  Google Scholar 

  4. Ghosh R, Shen X, Villegas JC, Ding Y, Malinger K, Suib SL (2006) J Phys Chem B 110(14):7592–7599

    Article  CAS  PubMed  Google Scholar 

  5. Sithambaram S, Nyutu EK, Suib SL (2008) Appl Catal A 348(2):214–220

    Article  CAS  Google Scholar 

  6. Hou J, Li Y, Liu L, Ren L, Zhao X (2013) Journal of Materials Chemistry A 1(23):6736–6741

    Article  CAS  Google Scholar 

  7. Tian H, He J, Zhang X, Zhou L, Wang D (2011) Microporous Mesoporous Mater 138(1–3):118–122

    Article  CAS  Google Scholar 

  8. Abecassis-Wolfovich M, Jothiramalingam R, Landau M, Herskowitz M, Viswanathan B, Varadarajan T (2005) Appl Catal B 59(1–2):91–98

    Article  CAS  Google Scholar 

  9. Liu J, Makwana V, Cai J, Suib SL, Aindow M (2003) J Phys Chem B 107(35):9185–9194

    Article  CAS  Google Scholar 

  10. Hajnajafi M, Khorshidi A, Gilani AG, Heidari B (2018) Res Chem Intermed 44(5):3313–3323

    Article  CAS  Google Scholar 

  11. Sihaib Z, Puleo F, Garcia-Vargas J, Retailleau L, Descorme C, Liotta L, Valverde J, Gil S, Giroir-Fendler A (2017) Appl Catal B 209:689–700

    Article  CAS  Google Scholar 

  12. Meng X, Wang Y, Wang Y, Chen B, Jing Z, Chen G, Zhao P (2017) J Organ Chem 13:6922

    Article  Google Scholar 

  13. Cai Z-Y, Zhu M-Q, Chen J, Shen Y-Y, Zhao J, Tang Y, Chen X-Z (2010) Catal Commun 12(3):197–201

    Article  CAS  Google Scholar 

  14. Yang Z-Z, Deng J, Pan T, Guo Q-X, Fu Y (2012) Green Chem 14(11):2986–2989

    Article  CAS  Google Scholar 

  15. Zhang H, Zhang Y, Liu L, Xu H, Wang Y (2005) Synthesis 2005(13):2129–2136

    Article  Google Scholar 

  16. Murahashi S-I, Komiya N, Terai H, Nakae T (2003) J Am Chem Soc 125(50):15312–15313

    Article  CAS  PubMed  Google Scholar 

  17. Tabatabaeian K, Mamaghani M, Mahmoodi NO, Khorshidi A (2008) Catal Commun 9(3):416–420

    Article  CAS  Google Scholar 

  18. Wu M, Fu K, Deng H, Shi J (2019) Chemosphere 219:756–765

    Article  CAS  PubMed  Google Scholar 

  19. Wu M, Shi J, Deng H (2018) Arab J Chem 11(6):924–934

    Article  CAS  Google Scholar 

  20. Li X, Ma J, Jia X, Xia F, Huang Y, Xu Y, Xu J (2018) ACS Sustainable Chemistry & Engineering 6(6):8048–8054

    Article  CAS  Google Scholar 

  21. Luo Y, Zheng Y, Zuo J, Feng X, Wang X, Zhang T, Zhang K, Jiang L (2018) J Hazard Mater 349:119–127

    Article  CAS  PubMed  Google Scholar 

  22. Yang S, Zhao H, Dong F, Tang Z, Zha F (2019) Molecular Catalysis 470:127–137

    Article  Google Scholar 

  23. Molleti J, Tiwari MS, Yadav GD (2018) Chem Eng J 334:2488–2499

    Article  CAS  Google Scholar 

  24. Mohammadi M, Khodamorady M, Tahmasbi B, Bahrami K, Ghorbani-Choghamarani A (2021) J Ind Eng Chem 97:1–78

    Article  CAS  Google Scholar 

  25. Ghorbani-Choghamarani A, Mohammadi M, Tamoradi T, Ghadermazi M (2019) Polyhedron 158:25–35

    Article  CAS  Google Scholar 

  26. Kazemi M, Mohammadi M (2020) Appl Organomet Chem 34(3):e5400

    Article  CAS  Google Scholar 

  27. Koolivand M, Nikoorazm M, Ghorbani-Choghamarani A, Mohammadi M (2022) Appl Organomet Chem 36(6):e6656

    Article  CAS  Google Scholar 

  28. Mohammadi M, Ghorbani-Choghamarani A, Ramish SM (2023) J Mol Struct 1292:136115

    Article  CAS  Google Scholar 

  29. Mohammadi M, Ghorbani-Choghamarani A (2022) Appl Organomet Chem 36(12):e6905

    Article  CAS  Google Scholar 

  30. Cheng F, Guo D, Lai J, Long M, Zhao W, Liu X, Yin D (2021) Front Chem Sci Eng 15:960–968

    Article  CAS  Google Scholar 

  31. Aneggi E, Campagnolo F, Segato J, Zuccaccia D, Baratta W, Llorca J, Trovarelli A (2023) Molecular Catalysis 540:113049

    Article  CAS  Google Scholar 

  32. Lai J, Cheng F, Zhou S, Wen S, Guo D, Zhao W, Liu X, Yin D (2021) Appl Surf Sci 565:150479

    Article  CAS  Google Scholar 

  33. Vinothini R, Tamizhdurai P, Mangesh VL, Vanjinathan M, Pazhanisamy P, Kumaran R, Kumar NS, Al-Fatesh AS, Kasim S (2023) Molecular Catalysis 549:113475

    Article  CAS  Google Scholar 

  34. Wang F, Lai J, Liu Z, Wen S, Liu X (2022) Biomass Conversion and Biorefinery 31:1–2

    Google Scholar 

  35. Li W-N, Yuan J, Gomez-Mower S, Sithambaram S, Suib SL (2006) J Phys Chem B 110(7):3066–3070

    Article  CAS  PubMed  Google Scholar 

  36. Shannon RD (1976) Acta Crystallograph Section A: Cryst Phys Diffract Theor Gen Crystallography 32(5):751–767

    Article  Google Scholar 

  37. Julien C, Massot M, Poinsignon C (2004) Spectrochim Acta Part A Mol Biomol Spectrosc 60(3):689–700

    Article  CAS  Google Scholar 

  38. Funk RL, Young ER, Williams RM, Flanagan MF, Cecil TL (1996) J Am Chem Soc 118(13):3291–3292

    Article  CAS  Google Scholar 

  39. Murahashi SI (2006) Ruthenium in organic synthesis. Wiley

  40. Krebs A, Starczewska B, Puzanowska-Tarasiewicz H, Sledz J (2006) Anal Sci 22(6):829–833

    Article  CAS  PubMed  Google Scholar 

  41. De Leenheer A (1973) J Chromatogr A 75(1):79–86

    Article  Google Scholar 

  42. Sheldon RA, Wallau M, Arends IW, Schuchardt U (1998) Acc Chem Res 31(8):485–493

    Article  CAS  Google Scholar 

  43. Yu T, Xu Q, Luo L, Liu C, Yin S (2022) Chem Eng J 430:133117

    Article  CAS  Google Scholar 

Download references

Funding

The authors received no funds.

Author information

Authors and Affiliations

Authors

Contributions

AK defined and conducted the project. Data analysis and editing of the manuscript was performed by him. MP performed the experiments and optimized the laboratory procedures. RB also performed the experiments and prepared the manuscript draft.

Corresponding author

Correspondence to Alireza Khorshidi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorshidi, A., Panahdar, M. & Badihi, R. Ru-modified Octahedral Manganese Oxide Molecular Sieve (Ru-OMS-2) as a Reusable Heterogeneous Catalyst in Selective Oxidation of Olanzapine and Other Polycyclic Compounds. Catal Lett (2024). https://doi.org/10.1007/s10562-023-04557-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-023-04557-y

Keywords

Navigation