Skip to main content
Log in

Engineering MnO2 Nanotubes@Co3O4 Polyhedron Composite with Cross-linked Network Structure for Efficient Catalytic Oxidation of Formaldehyde

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel cross-linked network structure of MnO2 nanotubes@Co3O4 polyhedron composite had been successfully prepared. Cobalt metal–organic framework (ZIF-67) in-situ grew on the open end of MnO2 nanotubes. Via a thermal treatment, MnO2@ZIF-67 was transformed into MnO2@Co3O4. When the Mn/Co molar ratio was 4:5, MnO2@Co3O4-45 showed excellent catalytic performance and water-resistance, which could obtain 100% HCHO conversion at 60 °C. The superior catalytic performance was mainly contributed to the strong synergistic interaction originated from the coupled interface between MnO2 and Co3O4. Moreover, the high percentage of Mn4+ and Co3+, plenty surface active oxygen species and well low-temperature reducibility played important roles for the enhancement of catalytic activity. DFT simulations showed that MnO2@Co3O4 exhibited the moderate adsorption capacity for HCHO, O2 and H2O, facilitating desorption of products and then continuing to the next catalytic reaction. Reaction pathways were also proposed under different atmosphere by in situ DRIFTS analysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao ZP (2019) Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem Rev 119:4471–4568

    Article  CAS  PubMed  Google Scholar 

  2. Guan SN, Li WZ, Ma JR, Lei YY, Zhu YS, Huang QF et al (2018) A review of the preparation and applications of MnO2 composites in formaldehyde oxidation. J Ind Eng Chem 66:126–140

    Article  CAS  Google Scholar 

  3. Wu HC, Liu YD, Chen GL, Li T, Jiang WT, Jia RR et al (2022) Surface-confined photodeposition of noble metal nanoclusters on TiO2 in a fluidized bed for the catalytic oxidation of formaldehyde. ACS Appl Nano Mater 5:13100–13111

    Article  CAS  Google Scholar 

  4. Chen J, Yan DX, Xu Z, Chen X, Chen X, Xu WJ et al (2018) A novel redox precipitation to synthesize Au-doped α-MnO2 with high dispersion toward low-temperature oxidation of formaldehyde. Environ Sci Technol 52:4728–4737

    Article  CAS  PubMed  Google Scholar 

  5. Di ZY, Chen HX, Zhang RD, Wang H, Jia JB, Wei Y (2022) Significant promotion of reducing treatment on Pd/TS-1 zeolite for formaldehyde catalytic purification at ambient temperature. Appl Catal B Environ 304:120843–120853

    Article  CAS  Google Scholar 

  6. Rong SP, Zhang PY, Liu F, Yang YJ (2018) Engineering crystal facet of α-MnO2 nanowire for highly efficient catalytic oxidation of carcinogenic airborne formaldehyde. ACS Catal 8:3435–3446

    Article  CAS  Google Scholar 

  7. Chen JW, Huang M, Chen W, Tang HY, Jiao Y, Zhang J et al (2020) Defect engineering and synergistic effect in Co3O4 catalysts for efficient removal of formaldehyde at room temperature. Ind Eng Chem Res 59:18781–18789

    Article  CAS  Google Scholar 

  8. Ma CY, Yang CG, Wang B, Chen C, Wang FB, Yao XL et al (2019) Effects of H2O on HCHO and CO oxidation at room-temperature catalyzed by MCo2O4 (M=Mn, Ce and Cu) materials. Appl Catal B Environ 254:76–85

    Article  CAS  Google Scholar 

  9. Wu JM, Yi HH, Tang XL, Zhao SZ, Xu JL, Meng JX et al (2020) Catalytic oxidation of formaldehyde by MnCo3MOx catalyst: effect of rare earth elements and temperature. Mater Chem Phys 240:122123–122133

    Article  CAS  Google Scholar 

  10. Zhang J, Gu FB, Wang CA (2021) Facile synthesis of multi-shelled MnO2-Co3O4 hollow spheres with superior catalytic activity for CO oxidation. Ceram Int 47:18411–18416

    Article  CAS  Google Scholar 

  11. HuangYC YKH, Li HB, Fan WJ, Zhao FY, Zhang YM et al (2016) A highly durable catalyst based on CoxMn3-xO4 nanosheets for low-temperature formaldehyde oxidation. Nano Res 9:3881–3892

    Article  Google Scholar 

  12. Liu W, Xiang WJ, Guan NN, Cui RY, Cheng H, Chen X et al (2021) Enhanced catalytic performance for toluene purification over Co3O4/MnO2 catalyst through the construction of different Co3O4-MnO2 interface. Sep Purif Technol 278:119590–119605

    Article  Google Scholar 

  13. Zhao Q, Liu Q, Zheng Y, Han R, Song C, Ji N et al (2020) Enhanced catalytic performance for volatile organic compound oxidation over in-situ growth of MnOx on Co3O4 nanowire. Chemosphere 244:125532–125542

    Article  CAS  PubMed  Google Scholar 

  14. Xiao W, Xia H, Fuh JYH, Lu L (2009) Growth of single-crystal-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties. J Power Sources 193:935–938

    Article  CAS  Google Scholar 

  15. Wang F, Dai H, Deng J, Bai G, Ji K, Liu Y (2012) Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environ Sci Technol 46:4034–4041

    Article  CAS  PubMed  Google Scholar 

  16. Zhao JH, Tang ZC, Dong F, Zhang JY (2019) Controlled porous hollow Co3O4 polyhedral nanocages derived from metalorganic frameworks (MOFs) for toluene catalytic oxidation. Mol Catal 463:77–86

    Article  CAS  Google Scholar 

  17. Zheng YL, Wang WZ, Jiang D, Zhang L (2016) Amorphous MnOx modified Co3O4 for formaldehyde oxidation: improved low-temperature catalytic and photothermocatalytic activity. Chem Eng J 284:21–27

    Article  CAS  Google Scholar 

  18. Zhu RM, Ding JW, Yang JP, Pang H, Xu Q, Zhang DL (2020) Quasi-ZIF-67 for boosted oxygen evolution reaction catalytic activity via a low temperature calcination. ACS Appl Mater Inter 12:25037–25041

    Article  CAS  Google Scholar 

  19. Li A, Zhang X, Xie ZJ, Chang Z, Zhou Z, Bu XH (2018) PAN@ZIF-67-derived “gypsophila”-like CNFs@Co-CoO composite as a cathode for LiO2 batteries. Inorg Chem 57:14476–14479

    Article  CAS  PubMed  Google Scholar 

  20. Kale VN, Maiyalagan T (2022) Lollipop-shaped interconnected MnO2 nanotube/Co3O4 polyhedron composite derived from zeolitic-imidazolate framework-67 as an efficient electrocatalyst for oxygen evolution reaction. Mater Today Chem 26:101063–101074

    Article  CAS  Google Scholar 

  21. Li X, Zheng JK, Liu S, Zhu TL (2019) A novel wormhole-like mesoporous hybrid MnCoOx catalyst for improved ethanol catalytic oxidation. J Colloid Interface Sci 555:667–675

    Article  CAS  PubMed  Google Scholar 

  22. Wang XB, Duan RB, Liu W, Wang DW, Wang BR, Xu YR et al (2020) The insight into the role of CeO2 in improving low-temperature catalytic performance and SO2 tolerance of MnCoCeOx microflowers for the NH3-SCR of NOx. Appl Surf Sci 510:145517–145527

    Article  CAS  Google Scholar 

  23. Han DW, Ma XY, Yang XQ, Xiao ML, Sun H, Ma LJ et al (2021) Metal organic framework-templated fabrication of exposed surface defect-enriched Co3O4 catalysts for efficient toluene oxidation. J Colloid Interface Sci 603:695–705

    Article  CAS  PubMed  Google Scholar 

  24. Ren QM, Mo SP, Fan J, Feng ZT, Zhang MY, Chen PR et al (2020) Enhancing catalytic toluene oxidation over MnO2@Co3O4 by constructing a coupled interface. Chin J Catal 41:1873–1883

    Article  CAS  Google Scholar 

  25. Tu S, Chen Y, Zhang XY, Yao JZ, Wu Y, Wu HX et al (2021) Complete catalytic oxidation of formaldehyde at room temperature on MnxCo3-xO4 catalysts derived from metal-organic frameworks. Appl Catal A Gen 611:117975–117985

    Article  CAS  Google Scholar 

  26. Shi YR, Tang XL, Yi HH, Gao FY, Zhao SZ, Wang JG et al (2019) Controlled synthesis of spinel-type mesoporous Mn-Co rods for SCR of NOx with NH3 at low temperature. Ind Eng Chem Res 58:3606–3617

    Article  CAS  Google Scholar 

  27. Bai BY, Arandiyan H, Li JH (2013) Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts. Appl Catal B Environ 142–143:677–683

    Article  Google Scholar 

  28. Luo YJ, Zheng YB, Zuo JC, Feng XS, Wang XY, Zhang TH et al (2018) Insights into the high performance of Mn-Co oxides derived from metalorganic frameworks for total toluene oxidation. J Hazard Mater 349:119–127

    Article  CAS  PubMed  Google Scholar 

  29. Wang ZY, Guo RT, Shi X, Liu XY, Qin H, Liu YZ et al (2020) The superior performance of CoMnOx catalyst with ball-flowerlike structure for low-temperature selective catalytic reduction of NOx by NH3. Chem Eng J 381:122753–122763

    Article  CAS  Google Scholar 

  30. Wang JL, Li JG, Jiang CJ, Zhou P, Zhang PY, Yu JG (2017) The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air. Appl Catal B Environ 204:147–155

    Article  CAS  Google Scholar 

  31. Chen L, Zhang C, Li YX, Chang CR, He C, Lu Q et al (2021) Hierarchically hollow MnO2@CeO2 heterostructures for NO oxidation: remarkably promoted activity and SO2 tolerance. ACS Catal 11:10988–10996

    Article  CAS  Google Scholar 

  32. He TH, Zhou Y, Ding DN, Rong SP (2021) Engineering manganese defects in Mn3O4 for catalytic oxidation of carcinogenic formaldehyde. ACS Appl Mater Interfaces 13:29664–29675

    Article  CAS  PubMed  Google Scholar 

  33. Mang CY, Li GH, Rao MJ, Zhang X, Luo J, Jiang T (2023) An ab initio investigation on the mechanism of formaldehyde oxidation: a case of heterogeneous catalytic reaction over graphene-like MnO2 monolayer anchored different single atoms (Fe Co, and Ni). Appl Surf Sci 608:154964–154978

    Article  CAS  Google Scholar 

  34. Yusuf A, Sun Y, Ren Y, Snape C, Wang CJ, Jia HP et al (2020) Opposite effects of Co and Cu dopants on the catalytic activities of birnessite MnO2 catalyst for low-temperature formaldehyde oxidation. J Phys Chem C 124:26320–26331

    Article  CAS  Google Scholar 

  35. He M, Cao YQ, Ji J, Li K, Huang HB (2021) Superior catalytic performance of Pd-loaded oxygen-vacancy-rich TiO2 for formaldehyde oxidation at room temperature. J Catal 396:122–135

    Article  CAS  Google Scholar 

  36. Du XY, Li CT, Zhang J, Zhao LK, Li SH, Lyu Y et al (2021) Highly efficient simultaneous removal of HCHO and elemental mercury over Mn-Co oxides promoted Zr-AC samples. J Hazard Mater 408:124830–124849

    Article  CAS  PubMed  Google Scholar 

  37. Qu YS, Zheng XM, Ma KK, He WW, Wang S, Zhang PY (2022) Facile coating of MnO2 nanoparticles onto polymer fibers via friction-heating adhesion for efficient formaldehyde removal. Chem Eng J 430:132954–132964

    Article  CAS  Google Scholar 

  38. Bai BY, Li JH (2014) Positive effects of K+ ions on three-dimensional mesoporous Ag/Co3O4 catalyst for HCHO oxidation. ACS Catal 4:2753–2762

    Article  CAS  Google Scholar 

  39. Li R, Shi XJ, Huang Y, Chen MJ, Zhu DD, Ho WK et al (2022) Catalytic oxidation of formaldehyde on ultrathin Co3O4 nanosheets at room temperature: effect of enhanced active sites exposure on reaction path. Appl Catal B Environ 319:121902–121914

    Article  CAS  Google Scholar 

  40. Zhang ZL, Ma JZ, He H (2022) Simple method to regulate surface hydroxyl groups on Al2O3 for improving catalytic oxidation performance for HCHO on Pt/Al2O3. Catal Sci Technol 12:6195–6204

    Article  CAS  Google Scholar 

  41. Li DD, Liu PL, Zheng YR, Wu Y, Ling L, Chen LT et al (2022) Chitosan-promoted sepiolite supported Ag as efficient catalyst for catalytic oxidative degradation of formaldehyde at low temperature. J Environ Chem Eng 10:108510–108525

    Article  CAS  Google Scholar 

  42. Chen XY, He GZ, Li YB, Chen M, Qin XX, Zhang CB et al (2020) Identification of a facile pathway for dioxymethylene conversion to formate catalyzed by surface hydroxyl on TiO2-based catalyst. ACS Catal 10:9706–9715

    Article  CAS  Google Scholar 

  43. Liu ZY, Niu JP, Long WM, Cui B, Song K, Dong F et al (2020) Highly efficient MnO2/AlOOH composite catalyst for indoor low-concentration formaldehyde removal at room temperature. Inorg Chem 59:7335–7343

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Basic Research Plan in Shaanxi Province of China (2022JM-078), the postgraduate’ Innovative Entrepreneurial Training Program of Xi’an Shiyou University (YCS22111009 and YCS22111013) and the Shaanxi Provincial College Students’ Innovative Entrepreneurial Training Program (S202210700057).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suhong Lu, Jurong Liu or Yuzhen Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1491 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Zheng, F., Wang, H. et al. Engineering MnO2 Nanotubes@Co3O4 Polyhedron Composite with Cross-linked Network Structure for Efficient Catalytic Oxidation of Formaldehyde. Catal Lett 154, 2949–2962 (2024). https://doi.org/10.1007/s10562-023-04512-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04512-x

Keywords

Navigation