Skip to main content
Log in

Effects of MnO2 Crystal Phases in MnO2/CeO2 Catalyst for NO Reduction by NH3-SCR

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The low-temperature (α-/β-/γ-/δ-MnO2/CeO2-Nanorod) catalysts have been synthesized using the hydrothermal method followed by wet-impregnation and anaylzed in the Inconel reactor for selective catalytic reduction of NO using NH3 as a reducing agent. The catalysts were characterized by the Brunauer-Emmett characterized catalysts–Teller, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy-Energy dispersive X-ray spectroscopy, transmission electron microscopy and Raman spectroscopy. The characterization analysis of the catalysts revealed that the α-MnO2/CeO2-Nanorod has the highest specific surface area, surface Ce3+ and Mn4+, and oxygen storage capacity among all the catalysts. The activity results exhibited that in the 50–450 °C temperature range, the α-MnO2/CeO2-Nanorod has the maximum NO conversion and N2 selectivity. It showed the highest NO conversion (75%) and N2 selectivity (86%) at 250 °C. As the amount of α-MnO2 increased in the α-MnO2/CeO2-Nanorod catalyst, the NO conversion with N2 selectivity exceeded 94.25% and 95%, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Peng Y (2019) Application of nanotechnology in pollution control of NOx from stationary sources. In Nanomaterials for the removal of pollutants and resource reutilization. Elsevier pp 179–211. https://doi.org/10.1016/B978-0-12-814837-2.00006-8

  2. Wang D, Chen Q, Zhang X, Gao C, Wang B, Huang X, Peng Y, Li J, Lu C, Crittenden J (2021) Multipollutant control (MPC) of flue gas from stationary sources using SCR technology: a critical review. Environ Sci Technol 55(5):2743–2766. https://doi.org/10.1021/acs.est.0c07326

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Gholami F, Tomas M, Gholami Z, Vakili M (2020) Technologies for the nitrogen oxides reduction from flue gas: a review. Sci Total Environ 714:136712. https://doi.org/10.1016/j.scitotenv.2020.136712

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Chen L, Ren S, Jiang Y, Liu L, Wang M, Yang J, Chen Z, Liu W, Liu Q (2022) Effect of Mn and Ce oxides on low-temperature NH3-SCR performance over blast furnace slag-derived zeolite X supported catalysts. Fuel 320:123969. https://doi.org/10.1016/j.fuel.2022.123969

    Article  CAS  Google Scholar 

  5. France LJ, Yang Q, Li W, Chen Z, Guang J, Guo D, Wang L, Li X (2017) Ceria modified FeMnOx-Enhanced performance and sulfur resistance for low-temperature SCR of NOx. Appl Catal B 206:203–215. https://doi.org/10.1016/j.apcatb.2017.01.019

    Article  CAS  Google Scholar 

  6. Shan W, Liu F, Yu Y, He H (2014) The use of ceria for the selective catalytic reduction of NOx with NH3. Chinese J Catal 35(8):1251–1259. https://doi.org/10.1016/S1872-2067(14)60155-8

    Article  CAS  Google Scholar 

  7. Rao SS, Sharma S (2023) MnOx/CeO2 catalysts for the low-temperature selective catalytic reduction of NO with NH3. Can J Chem Eng. https://doi.org/10.1002/cjce.24927

    Article  Google Scholar 

  8. Rao SS, Patel VK, Sharma S (2022) Selective catalytic reduction of NOx with NH3 over Mn2O3 supported with different morphology of CeO2 catalysts. ChemistrySelect 7(29):e202200302. https://doi.org/10.1002/slct.202200302

    Article  CAS  Google Scholar 

  9. Camarillo MK, Stringfellow WT, Hanlon JS, Watson KA (2013) Investigation of selective catalytic reduction for control of nitrogen oxides in full-scale dairy energy production. Appl Energy 106:328–336. https://doi.org/10.1016/j.apenergy.2013.01.066

    Article  ADS  CAS  Google Scholar 

  10. Sharaf J (2013) Exhaust emissions and its control technology for an internal combustion engine. Int J Eng Res 3(4):947–960

    Google Scholar 

  11. Mrad R, Aissat A, Cousin R, Courcot D, Siffert S (2015) Catalysts for NOx selective catalytic reduction by hydrocarbons (HC-SCR). Appl Catal 504:542–548. https://doi.org/10.1016/j.apcata.2014.10.021

    Article  CAS  Google Scholar 

  12. Forzatti P, Nova I, Tronconi E, Kustov A, Thøgersen JR (2012) Effect of operating variables on the enhanced SCR reaction over a commercial V2O5-WO3/TiO2 catalyst for stationary applications. Catal Today 184(1):153–159. https://doi.org/10.1016/j.cattod.2011.11.006

    Article  CAS  Google Scholar 

  13. Lasek J, Yu YH, Wu JC (2013) Removal of NOx by photocatalytic processes. J Photochem Photobiol C 14:29–52. https://doi.org/10.1016/j.jphotochemrev.2012.08.002

    Article  CAS  Google Scholar 

  14. Li N, Wang C, Zhang K, Lv H, Yuan M, Bahnemann DW (2022) Progress and prospects of photocatalytic conversion of low-concentration NOx. Chinese J Catal 43(9):2363–2387. https://doi.org/10.1016/S1872-2067(22)64139-1

    Article  CAS  Google Scholar 

  15. Li C, Li Q, Lu P, Cui H, Zeng G (2012) Characterization and performance of V2O5/CeO2 for NH3-SCR of NO at low temperatures. Front Environ Sci Eng 6(2):156–161. https://doi.org/10.1007/s11783-010-0295-x

    Article  CAS  Google Scholar 

  16. Wu S, Zhang L, Wang X, Zou W, Cao Y, Sun J, Tang C, Gao F, Deng Y, Dong L (2015) Synthesis, characterization, and catalytic performance of FeMnTiOx mixed oxides catalyst prepared by a CTAB-assisted process for mid-low temperature NH3-SCR. Appl Catal 505:235–242. https://doi.org/10.1016/j.apcata.2015.08.009

    Article  CAS  Google Scholar 

  17. Thirupathi B, Smirniotis PG (2012) Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: catalytic evaluation and characterizations. J Catal 288:74–83. https://doi.org/10.1016/j.jcat.2012.01.003

    Article  CAS  Google Scholar 

  18. Liu Z, Li Y, Zhu T, Su H, Zhu J (2014) Selective catalytic reduction of NOx by NH3 over Mn-promoted V2O5/TiO2 catalyst. Ind Eng Chem Res 53(33):12964–12970. https://doi.org/10.1021/ie501887f

    Article  CAS  Google Scholar 

  19. Yang J, Ren S, Su Z, Yao L, Cao J, Jiang L, Hu G, Kong M, Yang J, Liu Q (2020) In situ IR comparative study on N2O formation pathways over different valence states manganese oxides catalysts during NH3–SCR of NO. Chem Eng J 397:125446. https://doi.org/10.1016/j.cej.2020.125446

    Article  CAS  Google Scholar 

  20. Fu Z, Guo M, Liu C, Ji N, Song C, Liu Q (2015) Design, and synthesis functional selective catalytic reduction catalyst for NOx removal. Procedia Eng 121:952–956. https://doi.org/10.1016/j.proeng.2015.09.061

    Article  CAS  Google Scholar 

  21. Liu Z, Liu Y, Li Y, Su H, Ma L (2016) WO3 promoted Mn-Zr mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Chem Eng J 283:1044–1050. https://doi.org/10.1016/j.cej.2015.08.040

    Article  CAS  Google Scholar 

  22. Zhou Y, Ren S, Yang J, Liu W, Su Z, Chen Z, Wang M, Chen L (2021) NH3 treatment of CeO2 nanorods catalyst for improving NH3-SCR of NO. J Energy Inst 98:199–205. https://doi.org/10.1016/j.joei.2021.05.006

    Article  CAS  Google Scholar 

  23. Chen Z, Ren S, Zhou Y, Li X, Wang M, Chen L (2022) Comparison of Mn doped CeO2 with different exposed facets for NH3-SCR at low temperature. J Energy Inst 105:114–120. https://doi.org/10.1016/j.joei.2022.08.007

    Article  CAS  Google Scholar 

  24. Cai Q, Wang F, Hou Y, Jia Y, Liao B, Shen B, Zhang D (2023) Core-shell materials for selective catalytic reducing of NOx with ammonia: synthesis, anti-poisoning performance, and remaining challenges. Fuel Process Technol 243:107675. https://doi.org/10.1016/j.fuproc.2023.107675

    Article  CAS  Google Scholar 

  25. Yuan L, Hu P, Hu B, Han J, Ma S, Yang F, Volinsky AA (2023) Metallic and non-metallic components and morphology of iron-based catalytic effects for selective catalytic reduction performance: a systematic review. Mol Catal 541:113113. https://doi.org/10.1016/j.mcat.2023.113113

    Article  CAS  Google Scholar 

  26. Xiaomin W, Xiaolong Y, Zhiwei H, Huazhen S, Guohua J (2020) MnOx-decorated VOx/CeO2 catalysts with preferentially exposed 110 facets for selective catalytic reduction of NOx by NH3. Appl Catal B: Environ 268:118419. https://doi.org/10.1016/j.apcatb.2019.118419

    Article  CAS  Google Scholar 

  27. Jinxiu W, Yuqiu L, Xianfang Y, Yanting C, Yanke Y, Jinsheng C (2023) Effect of morphology and simultaneous sulfation on Fe doped CeO2 for selective catalytic reduction of NOx with NH3. Fuel 334:126771. https://doi.org/10.1016/j.fuel.2022.126771

    Article  CAS  Google Scholar 

  28. Yao X, Ma K, Zou W, He S, An J, Yang F, Dong L (2017) Influence of preparation methods on the physicochemical properties and catalytic performance of MnOx-CeO2 catalysts for NH3-SCR at low temperature. Chinese J Catal 38(1):146–159. https://doi.org/10.1016/S1872-2067(16)62572-X

    Article  CAS  Google Scholar 

  29. Andreoli S, Deorsola FA, Pirone R (2015) MnOx-CeO2 catalysts synthesized by solution combustion synthesis for the low-temperature NH3-SCR. Catal Today 253:199–206. https://doi.org/10.1016/j.cattod.2015.03.036

    Article  CAS  Google Scholar 

  30. Liu C, Gao G, Shi JW, He C, Li G, Bai N, Niu C (2016) MnOx-CeO2 shell-in-shell microspheres for NH3-SCR de-NOx at low temperature. Catal Commun 86:36–40. https://doi.org/10.1016/j.catcom.2016.08.003

    Article  ADS  CAS  Google Scholar 

  31. Tang T, Du X, Chen Y, Xue J, Chen K, Li X (2023) Study on the mechanism of selective catalytic reduction with propylene (C3H6-SCR) on the MnOx-based catalysts by a doping experiment and DFT+ U calculation. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2023.109831

    Article  Google Scholar 

  32. Peng Y, Chang H, Dai Y, Li J (2013) Structural and surface effect of MnO2 for low temperature selective catalytic reduction of NO with NH3. Procedia Environ Sci 18:384–390. https://doi.org/10.1016/j.proenv.2013.04.051

    Article  CAS  Google Scholar 

  33. Yang J, Ren S, Su B, Hu G, Jiang L, Cao J, Liu W, Yao L, Kong M, Yang J, Liu Q (2021) Insight into N2O formation over different crystal phases of MnO2 during low-temperature NH3–SCR of NO. Catal Lett 151(10):2964–2971. https://doi.org/10.1007/s10562-021-03541-8

    Article  CAS  Google Scholar 

  34. Chen H, Wang Y, Lv YK (2026) Catalytic oxidation of NO over MnO2 with different crystal structures. RSC adv 6(59):54032–54040. https://doi.org/10.1039/C6RA10103H

    Article  ADS  CAS  Google Scholar 

  35. Li S, Zheng Z, Zhao Z, Wang Y, Yao Y, Liu Y, Zhang J, Zhang Z (2022) CeO2 Nanoparticle-loaded MnO2 nanoflowers for selective catalytic reduction of NOx with NH3 at low temperatures. Molecules 27(15):4863. https://doi.org/10.3390/molecules27154863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang C, Yu F, Zhu M, Tang C, Dong L, Dai B (2018) Synthesis of both powdered and preformed MnOx–CeO2–Al2O3 catalysts by self-propagating high-temperature synthesis for the selective catalytic reduction of NOx with NH3. ACS Omega 3(5):5692–5703. https://doi.org/10.1021/acsomega.7b01286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang F, Ye D, Guo X, Zhan W, Guo Y, Wang L, Wang Y, Guo Y (2022) Effect of ceria morphology on the performance of MnOx/CeO2 catalysts in catalytic combustion of N, N-dimethylformamide. Catal Sci Technol 10(8):2473–2483. https://doi.org/10.1039/C9CY02384D

    Article  Google Scholar 

  38. Lian Z, Shan W, Zhang Y, Wang M, He H (2018) Morphology-dependent catalytic performance of NbOx/CeO2 catalysts for selective catalytic reduction of NOx with NH3. Ind Eng Chem 57(38):12736–12741. https://doi.org/10.1021/acs.iecr.8b02553

    Article  CAS  Google Scholar 

  39. Wang D, Peng Y, Yang Q, Hu F, Li J, Crittenden J (2019) NH3-SCR performance of WO3 blanketed CeO2 with different morphology: balance of surface reducibility and acidity. Catal Today 332:42–48. https://doi.org/10.1016/j.cattod.2018.07.048

    Article  CAS  Google Scholar 

  40. Gong L, Liu C, Liu Q, Dai R, Nie X, Lu L, Liu G, Hu X (2019) CuO/CeO2–MnO2 catalyst prepared by redox method for preferential oxidation of CO in H2-rich gases. Catal Surv Asia 23:1–9. https://doi.org/10.1007/s10563-019-09264-6

    Article  CAS  Google Scholar 

  41. Maitarad P, Han J, Zhang D, Shi L, Namuangruk S, Rungrotmongkol T (2014) Structure–activity relationships of NiO on CeO2 nanorods for the selective catalytic reduction of NO with NH3: experimental and DFT studies. J Phys Chem C 118(18):9612–9620. https://doi.org/10.1021/jp5024845

    Article  CAS  Google Scholar 

  42. Patel VK, Sharma S (2021) Effect of oxide supports on palladium-based catalysts for NO reduction by H2-SCR. Catal Today 375:591–600. https://doi.org/10.1016/j.cattod.2020.04.006

    Article  CAS  Google Scholar 

  43. Pu ZY, Lu JQ, Luo MF, Xie YL (2007) Study of oxygen vacancies in Ce0. 9Pr0. 1O2-δ solid solution by in situ X-ray diffraction and in situ Raman spectroscopy. J Phys Chem C 111(50):18695–18702. https://doi.org/10.1021/jp0759776

    Article  CAS  Google Scholar 

  44. Wu Z, Jin R, Liu Y, Wang H (2008) Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catal Commun 9(13):2217–2220. https://doi.org/10.1016/j.catcom.2008.05.001

    Article  CAS  Google Scholar 

  45. Chang H, Chen X, Li J, Ma L, Wang C, Liu C, Schwank JW, Hao J (2013) Improvement of activity and SO2 tolerance of Sn-modified MnOx–CeO2 catalysts for NH3-SCR at low temperatures. Environ Sci Technol 47(10):5294–5301. https://doi.org/10.1021/es304732h

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Qingya L, Zhenyu L, Chengyue L (2006) Adsorption, and activation of NH3 during selective catalytic reduction of NO by NH3. Chinese J Catal 27(7):636–646. https://doi.org/10.1016/S1872-2067(06)60035-1

    Article  Google Scholar 

  47. Li W, Zhang C, Li X, Tan P, Zhou A, Fang Q, Chen G (2018) Ho-modified Mn-Ce/TiO2 for low-temperature SCR of NOx with NH3: evaluation and characterization. Chinese J Catal 39(10):1653–1663. https://doi.org/10.1016/S1872-2067(18)63099-2

    Article  CAS  Google Scholar 

  48. Liu F, He H, Ding Y, Zhang C (2009) Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3. Appl Catal B: Environ 93(1–2):194–204. https://doi.org/10.1016/j.apcatb.2009.09.029

    Article  CAS  Google Scholar 

  49. Cao Y, Zhang C, Lv L, Zhang T, Chen Y, Tang S, Wang Y, Tang W (2023) Confinement effect and hetero-interface enable high-performing MnOx/CeO2 oxidation catalysts with exceptional sintering resistance: morphology effect of ceria support. Chem Eng J 462:142257. https://doi.org/10.1016/j.cej.2023.142257

    Article  CAS  Google Scholar 

  50. Wang R, Mutinda SI, Fang M (2013) One-pot hydrothermal synthesis and high-temperature thermal stability of CexZr1−xO2 nanocrystals. RSC Adv 3(42):19508–19514. https://doi.org/10.1039/C3RA44150D

    Article  ADS  CAS  Google Scholar 

  51. Zhou X, Ling J, Sun W, Shen Z (2017) Fabrication of homogeneously Cu2+/La3+-doped CeO2 nanosheets and their application in CO oxidation. J Mater Chem A 5(20):9717–9722. https://doi.org/10.1039/C7TA00924K

    Article  CAS  Google Scholar 

  52. Liyanage AD, Perera SD, Tan K, Chabal Y, Balkus KJ Jr (2014) Synthesis, characterization, and photocatalytic activity of Y-doped CeO2 nanorods. ACS Catal 4(2):577–658. https://doi.org/10.1021/cs400889y

    Article  CAS  Google Scholar 

  53. Gao R, Zhang D, Maitarad P, Shi L, Rungrotmongkol T, Li H, Zhang J, Cao W (2013) Morphology-dependent properties of MnOx/ZrO2–CeO2 nanostructures for the selective catalytic reduction of NO with NH3. J Phys Chem C 117(20):10502–10511. https://doi.org/10.1021/jp400984z

    Article  CAS  Google Scholar 

  54. Chen L, Ren S, Liu L, Su B, Yang J, Chen Z, Wang M, Liu Q (2022) Catalytic performance over Mn-Ce catalysts for NH3-SCR of NO at low temperature: different zeolite supports. J Environ Chem Eng 10(2):107167. https://doi.org/10.1016/j.jece.2022.107167

    Article  CAS  Google Scholar 

  55. Wu XM, Ni KW, Yu XL, Ning ZHAO (2020) In-situ DRIFTs study on different exposed facets of VOx-MnOx/CeO2 catalysts for low-temperature NH3-SCR. J Fuel Chem Technol 48(2):179–188. https://doi.org/10.1016/S1872-5813(20)30009-8

    Article  CAS  Google Scholar 

  56. Hang B, Zhang S, Liu B (2020) Effect of oxygen vacancies on ceria catalyst for selective catalytic reduction of NO with NH3. Appl Surf Sci. 529:147068. https://doi.org/10.1016/j.apsusc.2020.147068

    Article  CAS  Google Scholar 

  57. Jiang Z, Wang Q, Cai Y (2022) Enhanced catalytic activity and SO2/H2O tolerance for selective catalytic reduction of NOx with NH3 over Titanate nanotubes supported MnOx–CeO2 catalyst at low temperature. Catal Surv. https://doi.org/10.1007/s10563-022-09356-w

    Article  Google Scholar 

  58. Wang H, Wang L, Luo Q, Zhang J, Wang C, Ge X, Zhang W, Xiao FS (2022) Two-dimensional manganese oxide on ceria for the catalytic partial oxidation of hydrocarbons. Chem Synth 2(1):2. https://doi.org/10.20517/cs.2022.02

    Article  CAS  Google Scholar 

  59. Mingshan C, Yuan L, Xinquan W, Jun W, Meiqing S (2013) Effect of preparation method on MnOx-CeO2 catalysts for NO oxidation. J Rare Earths 31(6):572–576. https://doi.org/10.1016/S1002-0721(12)60322-6

    Article  CAS  Google Scholar 

  60. Kang M, Park ED, Kim JM, Yie JE (2007) Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl catal 327(2):261–269. https://doi.org/10.1016/j.apcata.2007.05.024

    Article  CAS  Google Scholar 

  61. Ye L, Lu P, Chen D, Chen D, Wu H, Dai W, Gan Y, Xiao J, Xie Z, Li Z, Huang H (2021) Activity enhancement of acetate precursor prepared on MnOx-CeO2 catalyst for low-temperature NH3-SCR: Effect of gaseous acetone addition. Chin Chem Lett 32(8):2509–2512. https://doi.org/10.1016/j.cclet.2020.12.040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Science and Engineering Research Board (SERB), Government of India (SPG/2021/003603) is sincerely acknowledged.

Funding

Science and Engineering Research Board (SERB), Government of India, SPG/2021/003603.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sweta Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, S.S., Sharma, S. Effects of MnO2 Crystal Phases in MnO2/CeO2 Catalyst for NO Reduction by NH3-SCR. Catal Lett 154, 1768–1781 (2024). https://doi.org/10.1007/s10562-023-04438-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04438-4

Keywords

Navigation