Skip to main content
Log in

Efficient and Reusable Benzimidazole Based Sulphonic Acid Functionalized Porphyrin Photocatalyst for C–N Bond Formation Under Visible Light Irradiation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Synthesised N-substituted heterocyclic derivatives have ubiquitous applications in fine chemicals, pharmaceuticals, organic electronic materials, and agrochemicals. Numerous reports of photocatalytic C–N coupling in aid of a 5 W visible light source are documented in the literature which facilitates the cost reducibility, reusability, and promising methods for reaction. In this present work, we have designed and synthesised a benzimidazole-based sulphonic acid functionalized porphyrin photocatalyst (BSAFPPc) and confirmed by analytical techniques such as FT-NMR, FT-IR, and SEM/EDX. The BSAFPPc demonstrated an optical energy gap of 1.12 eV by using DRS. Further, the acidic potential was scrutinized by the Hammett acidity function which is H0 = 0.99. The BSAFPPc was used for the C–N coupling of morpholine, and inactivated aryl halides comprising electron-donating (–NH2, –OMe, –CH3) and withdrawing groups (–CHO, –NO2). This photocatalytic reaction produced an excellent practical yield from 60 to 90%. Further, the scope was extended to benzimidazole, pyrrole, indole and 1,2,4-triazole. The reaction has been experimented in an in-house homemade reactor system in a presence of a 5 W visible light source in an additive-free environment at ambient conditions. The photocatalyst was durable up to six photocatalytic cycles. The photocatalyst maintained its heterogenous nature which was asserted by the leaching test.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 10
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ruiz-Castillo P, Buchwald SL (2016) Applications of palladium-catalyzed C-N cross-coupling reactions. Chem Rev 116:12564–12649. https://doi.org/10.1021/acs.chemrev.6b00512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sambiagio C, Marsden SP, Blacker AJ, McGowan PC (2014) Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development. Chem Soc Rev 43:3525–3550. https://doi.org/10.1039/c3cs60289c

    Article  CAS  PubMed  Google Scholar 

  3. Dorel R, Grugel CP, Haydl AM (2019) The Buchwald-Hartwig amination after 25 years. Angew Chemie - Int Ed 58:17118–17129. https://doi.org/10.1002/anie.201904795

    Article  CAS  Google Scholar 

  4. West MJ, Fyfe JWB, Vantourout JC, Watson AJB (2019) Mechanistic development and recent applications of the Chan-Lam amination. Chem Rev 119:12491–12523. https://doi.org/10.1021/acs.chemrev.9b00491

    Article  CAS  PubMed  Google Scholar 

  5. Shen Q, Hartwig JF (2007) Lewis acid acceleration of C-N bond-forming reductive elimination from heteroarylpalladium complexes and catalytic amidation of heteroaryl bromides. J Am Chem Soc 129:7734–7735. https://doi.org/10.1021/ja0722473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Strieter ER, Bhayana B, Buchwald SL (2009) Mechanistic studies on the copper-catalyzed N-arylation of amides. J Am Chem Soc 131:78–88. https://doi.org/10.1021/ja0781893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Avudoddi V, Palle VKG, Pallapothula VR (2012) Recyclable and reusable nano-CuFe2O4 catalyzed C-O cross-coupling. Eur J Chem 3:298–304. https://doi.org/10.5155/eurjchem.3.3.298-304.540

    Article  CAS  Google Scholar 

  8. Gujadhur R, Venkataraman D, Kintigh JT (2001) Formation of aryl-nitrogen bonds using a soluble copper(I) catalyst. Tetrahedron Lett 42:4791–4793. https://doi.org/10.1016/S0040-4039(01)00888-7

    Article  CAS  Google Scholar 

  9. Yamada K, Kubo T, Tokuyama H, Fukuyama T (2002) A mild copper-mediated intramolecular amination of aryl halides. Synlett. https://doi.org/10.1055/s-2002-19782

    Article  Google Scholar 

  10. Cristau HJ, Cellier PP, Spindler JF, Taillefer M (2004) Mild conditions for copper-catalysed N-arylation of pyrazoles. European J Org Chem. https://doi.org/10.1002/ejoc.200300709

    Article  Google Scholar 

  11. Antilla JC, Baskin JM, Barder TE, Buchwald SL (2004) Copper-diamine-catalyzed N-arylation of pyrroles, pyrazoles, indazoles, imidazoles, and triazoles. J Org Chem 69:5578–5587. https://doi.org/10.1021/jo049658b

    Article  CAS  PubMed  Google Scholar 

  12. Huang YZ, Miao H, Zhang QH et al (2008) Cu2O: a simple and efficient reusable catalyst for N-arylation of nitrogen-containing heterocycles with aryl halides. Catal Letters 122:344–348. https://doi.org/10.1007/s10562-007-9386-0

    Article  CAS  Google Scholar 

  13. Das S, Maity T, Koner S (2016) Heterogeneous sequential N-arylation of N-heterocycles over copper anchored mesoporous silica catalyst. Appl Catal A 513:53–66. https://doi.org/10.1016/j.apcata.2015.12.029

    Article  CAS  Google Scholar 

  14. Gawande MB, Goswami A, Felpin FX et al (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482

    Article  CAS  PubMed  Google Scholar 

  15. Huang Z, Li F, Chen B et al (2011) Nitrogen-rich copolymeric microsheets supporting copper nanoparticles for catalyzing arylation of N-heterocycles. Appl Catal A 403:104–111. https://doi.org/10.1016/j.apcata.2011.06.019

    Article  CAS  Google Scholar 

  16. Gopiraman M, Ganesh Babu S, Khatri Z et al (2013) An efficient, reusable copper-oxide/carbon-nanotube catalyst for N-arylation of imidazole. Carbon 62:135–148. https://doi.org/10.1016/j.carbon.2013.06.005

    Article  CAS  Google Scholar 

  17. Sivakami R, Babu SG, Dhanuskodi S, Karvembu R (2015) Magnetically retrievable lepidocrocite supported copper oxide nanocatalyst (Fe-CuO) for N-arylation of imidazole. RSC Adv 5:8571–8578. https://doi.org/10.1039/c4ra13256d

    Article  CAS  Google Scholar 

  18. Mitrofanov AY, Murashkina AV, Martín-García I et al (2017) Formation of C-C, C-S and C-N bonds catalysed by supported copper nanoparticles. Catal Sci Technol 7:4401–4412. https://doi.org/10.1039/c7cy01343d

    Article  CAS  Google Scholar 

  19. Oeser P, Koudelka J, Petrenko A, Tobrman T (2021) Recent progress concerning the N-arylation of indoles. Molecules. https://doi.org/10.3390/molecules26165079

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang T, Xu K, Liu L et al (2016) An easily available N-heterocyclic carbene–palladium(II) catalyst for Buchwald-Hartwig amination of aryl chlorides. Transit Met Chem 41:525–529. https://doi.org/10.1007/s11243-016-0048-1

    Article  CAS  Google Scholar 

  21. Tardiff BJ, McDonald R, Ferguson MJ, Stradiotto M (2012) Rational and predictable chemoselective synthesis of oligoamines via Buchwald-Hartwig amination of (hetero)aryl chlorides employing Mor-Dalphos. J Org Chem 77:1056–1071. https://doi.org/10.1021/jo202358p

    Article  CAS  PubMed  Google Scholar 

  22. Rafiee E, Ataei A, Joshaghani M (2016) An efficient heterogeneous ligand free C-N coupling reaction catalyzed by palladium supported on magnetic nanoparticles. Tetrahedron Lett 57:219–222. https://doi.org/10.1016/j.tetlet.2015.12.020

    Article  CAS  Google Scholar 

  23. Veisi H, Safarimehr P, Hemmati S (2019) Buchwald-Hartwig C-N cross coupling reactions catalyzed by palladium nanoparticles immobilized on thio modified-multi walled carbon nanotubes as heterogeneous and recyclable nanocatalyst. Mater Sci Eng C 96:310–318. https://doi.org/10.1016/j.msec.2018.11.026

    Article  CAS  Google Scholar 

  24. Veisi H, Morakabati N (2015) Palladium nanoparticles supported on modified single-walled carbon nanotubes: a heterogeneous and reusable catalyst in the Ullmann-type N-arylation of imidazoles and indoles. New J Chem 39:2901–2907. https://doi.org/10.1039/c4nj02108h

    Article  CAS  Google Scholar 

  25. Paul A, Chatterjee D, Banerjee S, Yadav S (2020) Ligand and Cu freeN-arylation of indoles, pyrroles and benzylamines with aryl halides catalyzed by a Pd nanocatalyst. New J Chem 44:14447–14452. https://doi.org/10.1039/d0nj02129f

    Article  CAS  Google Scholar 

  26. Goyal V, Gahtori J, Narani A et al (2019) Commercial Pd/C-catalyzed N—Methylation of nitroarenes and amines using methanol as both C1 and H2 source. J Org Chem. https://doi.org/10.1021/acs.joc.9b02141

    Article  PubMed  Google Scholar 

  27. Oderinde MS, Jones NH, Juneau A et al (2016) Highly chemoselective iridium photoredox and nickel catalysis for the cross-coupling of primary aryl amines with aryl halides. Angew Chemie - Int Ed 55:13219–13223. https://doi.org/10.1002/anie.201604429

    Article  CAS  Google Scholar 

  28. Song G, Nong D, Li J et al (2022) General method for the amination of aryl halides with primary and secondary alkyl amines via nickel photocatalysis. J Org Chem. https://doi.org/10.1021/acs.joc.2c01284

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ziegler DT, Choi J, Muñoz-Molina JM et al (2013) A versatile approach to ullmann C-N couplings at room temperature: new families of nucleophiles and electrophiles for photoinduced, copper-catalyzed processes. J Am Chem Soc 135:13107–13112. https://doi.org/10.1021/ja4060806

    Article  CAS  PubMed  Google Scholar 

  30. Kudisch M, Lim CH, Thordarson P, Miyake GM (2019) Energy transfer to Ni-amine complexes in dual catalytic, light-driven C-N cross-coupling reactions. J Am Chem Soc 141:19479–19486. https://doi.org/10.1021/jacs.9b11049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu YY, Liang D, Lu LQ, Xiao WJ (2019) Practical heterogeneous photoredox/nickel dual catalysis for C-N and C-O coupling reactions. Chem Commun 55:4853–4856. https://doi.org/10.1039/c9cc00987f

    Article  CAS  Google Scholar 

  32. Till NA, Tian L, Dong Z et al (2020) Mechanistic analysis of metallaphotoredox C-N coupling: photocatalysis initiates and perpetuates Ni(I)/Ni(III) coupling activity. J Am Chem Soc 142:15830–15841. https://doi.org/10.1021/jacs.0c05901

    Article  CAS  PubMed  Google Scholar 

  33. Lim CH, Kudisch M, Liu B, Miyake GM (2018) C-N cross-coupling via photoexcitation of nickel-amine complexes. J Am Chem Soc 140:7667–7673. https://doi.org/10.1021/jacs.8b03744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bhansali K, Raut S, Barange S, Bhagat P (2020) Sulphonic acid functionalized porphyrin anchored with a: meso -substituted triazolium ionic liquid moiety: a heterogeneous photo-catalyst for metal/base free C-C cross-coupling and C-N/C-H activation using aryl chloride under visible light irradiation. New J Chem 44:19690–19712. https://doi.org/10.1039/d0nj03637d

    Article  CAS  Google Scholar 

  35. Khajone VB, Balinge KR, Bhagat PR (2021) Polymer-supported Fe-phthalocyanine derived heterogeneous photo-catalyst for the synthesis of tetrazoles under visible light irradiation. Catal Letters 151:1948–1960. https://doi.org/10.1007/s10562-020-03461-z

    Article  CAS  Google Scholar 

  36. Raut SU, Bhagat PR (2021) Sugarcane bio-refinery products: an efficient one umbrella approach for synthesis of biofuel and value-added compounds using metal-free photo-catalyst. Fuel 303:121154. https://doi.org/10.1016/j.fuel.2021.121154

    Article  CAS  Google Scholar 

  37. Raut SU, Bhagat PR (2021) Efficient photocatalytic acetalization of furfural to biofuel components using carboxyl-functionalized porphyrin photocatalyst, under visible light irradiations. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01658-9

    Article  Google Scholar 

  38. Bhuse DV, Bhagat PR (2021) Synthesis and characterization of a conjugated porphyrin dyad entangled with carboxyl functionalized benzimidazolium: an efficient metal free sensitizer for DSSCs. New J Chem 45:1430–1445. https://doi.org/10.1039/d0nj05387b

    Article  CAS  Google Scholar 

  39. Bhuse DV, Raut SU, Deshmukh SA et al (2022) Visible-light aided C−H activation: Metal/base-free generation of c−c bonds using porphyrin photocatalyst. ChemistrySelect. https://doi.org/10.1002/slct.202201180

    Article  Google Scholar 

  40. Uttamrao S, Kamlesh R, Balinge R, Jeevanlal K (2022) Benzimidazole—Based carboxyl functionalized porphyrin with enhanced photocatalytic activity towards metal free sonogashira coupling. Catal Letters. https://doi.org/10.1007/s10562-022-04154-5

    Article  Google Scholar 

  41. Bhansali KJ, Balinge KR, Raut SU et al (2021) Visible light assisted sulfonic acid-functionalized porphyrin comprising benzimidazolium moiety for photocatalytic transesterification of castor oil. Fuel 304:121490. https://doi.org/10.1016/j.fuel.2021.121490

    Article  CAS  Google Scholar 

  42. Saikia S, Gogoi P, Dutta AK et al (2016) Design of multifaceted acidic 1,3-disulfoimidazolium chlorometallate ionic systems as heterogeneous catalysts for the preparation of β-amino carbonyl compounds. J Mol Catal A 416:63–72. https://doi.org/10.1016/j.molcata.2016.02.007

    Article  CAS  Google Scholar 

  43. Lee MW, Lee DL, Yen WN, Yeh CY (2009) Synthesis, optical and photovoltaic properties of porphyrin dyes. J Macromol Sci Part A 46:730–737. https://doi.org/10.1080/10601320902938558

    Article  CAS  Google Scholar 

  44. Deshmukh SA, Bhagat PR (2022) Metal free porphyrin photocatalyst comprising ionic liquid with electron donor acceptor moiety for visible light assisted oxidative amination. ChemistrySelect 7:1–10. https://doi.org/10.1002/slct.202200189

    Article  CAS  Google Scholar 

  45. Khajone VB, Raut SU, Deshmukh SA et al (2021) Recyclable polymer-supported carboxyl functionalized Zn–porphyrin photocatalyst for transfer hydrogenation of levulinic acid to γ-valerolactone. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01688-3

    Article  Google Scholar 

  46. Raut SU, Balinge KR, Deshmukh SA et al (2022) Solvent/metal-free benzimidazolium-based carboxyl-functionalized porphyrin photocatalysts for the room-temperature alkylation of amines under the irradiation of visible light. Catal Sci Technol. https://doi.org/10.1039/d2cy00846g

    Article  Google Scholar 

  47. Chen L, Zhang C, Wu L et al (2018) A Facile one-pot synthesis of biomimetic photocatalyst Zn(II)-porphyrin-sensitized 3D TiO2 Hollow nanoboxes and synergistically enhanced visible-light degradation. Nanoscale Res Lett. https://doi.org/10.1186/s11671-018-2745-5

    Article  PubMed  PubMed Central  Google Scholar 

  48. Raut SU, Deshmukh SA, Barange SH, Bhagat PR (2022) Visible-light mediated sustainable route for conversion of biomass derived levulinic acid to value added compounds by porphyrin photocatalyst. Catal Today. https://doi.org/10.1016/j.cattod.2022.08.013

    Article  Google Scholar 

  49. Wimmer A, König B (2017) Photocatalytic formation of carbon-sulfur bonds. Beilstein J Org Chem 14:54–83. https://doi.org/10.3762/bjoc.14.4

    Article  CAS  Google Scholar 

  50. Lavagnino MN, Liang T, MacMillan DWC (2020) HARC as an open-shell strategy to bypass oxidative addition in Ullmann-Goldberg couplings. Proc Natl Acad Sci U S A 117:21058–21064. https://doi.org/10.1073/pnas.2011831117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bissember AC, Lundgren RJ, Creutz SE et al (2013) Transition-metal-catalyzed alkylations of amines with alkyl halides: photoinduced, copper-catalyzed couplings of carbazoles. Angew Chemie Int Ed 52:5129–5133. https://doi.org/10.1002/anie.201301202

    Article  CAS  Google Scholar 

  52. Deol H, Singh G, Kumar M, Bhalla V (2020) Phenazine-Based donor acceptor systems as organic photocatalysts for “metal-free” C-N/C-C cross-coupling. J Org Chem 85:11080–11093. https://doi.org/10.1021/acs.joc.9b03407

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank VIT-SIF SAS and the SEM Facility at SBST VIT, Vellore, for providing instrumentation. The authors would also like to thank VIT for sponsoring a “VIT SEED GRANT” to carry out this research. We gratefully appreciate VIT Management, the Department of Chemistry (SAS), and the “Smart Materials Laboratory for Bio-sensing and Catalysis” for their assistance with fundamental research facilities for doing research

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pundlik Rambhau Bhagat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2394 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, S.A., Bhagat, P.R. Efficient and Reusable Benzimidazole Based Sulphonic Acid Functionalized Porphyrin Photocatalyst for C–N Bond Formation Under Visible Light Irradiation. Catal Lett 153, 3230–3255 (2023). https://doi.org/10.1007/s10562-022-04255-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04255-1

Keywords

Navigation