Skip to main content
Log in

Synthesis of 5-Hydroxymethyl-2-furfurylamine via Reductive Amination of 5-Hydroxymethyl-2-furaldehyde with Supported Ni-Co Bimetallic Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This work represents reductive amination of 5-hydroxymethyl-2-furaldehyde (HMF) to 5-hydroxymethyl-2-furfurylamine (HMFA) catalyzed by Ni-based bimetallic catalysts. It was found that hydroxyapatite (HAP) was the excellent support for the reaction and the bimetallic 3 wt%Ni–2 wt% Co-loaded HAP (Ni3Co2HAP) catalyst gave the highest activity of 60% at 2 mmol scale by a batch reactor. X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM) results suggested that the large metallic composition of both Ni and Co were the crucial factor for high activity on the CoNi-supported HAP catalyst for the synthesis of HMFA via reductive amination of HMF.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Clark JH (2019) Green biorefinery technologies based on waste biomass. Green Chem 21:1168–1170

    Article  CAS  Google Scholar 

  2. Cai JM, Liu RH, Deng CJ (2008) An assessment of biomass resources availability in Shanghai: 2005 analysis. Renew Sust Energ Rev 12:1997–2004

    Article  Google Scholar 

  3. Baral NR, Sundstrom ER, Das L, Gladden J, Eudes A, Mortimer JC, Singer SW, Mukhopadhyay A, Scown CD (2019) Approaches for more efficient biological conversion of lignocellulosic feedstocks to biofuels and bioproducts. ACS Sustain Chem Eng 7:9062–9079

    Article  CAS  Google Scholar 

  4. Wang A, Zhang T (2013) One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc Chem Res 46:1377–1386

    Article  PubMed  CAS  Google Scholar 

  5. Yabushita M, Kobayashi H, Kuroki K, Ito S, Fukuoka A (2015) Catalytic depolymerization of chitin with retention of N-Acetyl group. Chemsuschem 8:3760–3763

    Article  PubMed  CAS  Google Scholar 

  6. Lawrence SA (2004) Amines: synthesis, properties, and application. Cambridge University Press, Cambridge

    Google Scholar 

  7. Klinkenberg JL, Hartwig JF (2011) Catalytic organometallic reactions of ammonia. Angew Chem Int Ed 50:86–95

    Article  CAS  Google Scholar 

  8. Ramachandran PV, Gagare PD, Sakavuyi K, Clark P (2010) Reductive amination using ammonia borane. Tetrahedron Lett 51:3167–3169

    Article  Google Scholar 

  9. Apodaca R, Xiao W (2001) Direct reductive amination of aldehydes and ketones using phenylsilane: catalysis by dibutyltin dichloride. Org Lett 3:1745–1748

    Article  PubMed  CAS  Google Scholar 

  10. Abdel-Magid AF, Mehrman SJ (2006) A review on the use of sodium triacetoxyborohydride in the reductive amination of ketones and aldehydes. Org Process Res Dev 10:971–1031

    Article  CAS  Google Scholar 

  11. Abdel-Magid AF, Maryanoff CA, Carson KG (1990) Reductive amination of aldehydes and ketones by using sodium triacetoxyborohydride. Tetrahedron Lett 31:5595–5598

    Article  CAS  Google Scholar 

  12. Ranu BC, Majee A, Sarkar A (1998) One-pot reductive amination of conjugated aldehydes and ketones with silica gel and zinc borohydride. J Org Chem 63:370–373

    Article  CAS  Google Scholar 

  13. Ogo S, Uehara K, Abura T, Fukuzumi S (2004) pH-Dependent chemoselective synthesis of α-amino acids. Reductive amination of α-keto acids with ammonia catalyzed by acid-stable iridium hydride complexes in water. J Am Chem Soc 126:3020–3021

    Article  PubMed  CAS  Google Scholar 

  14. Basu B, Jha S, Bhuiyan MMH, Das P (2003) A simple protocol for direct reductive amination of aldehydes and ketones using potassium formate and catalytic palladium acetate. Syn Lett 4:555–557

    Google Scholar 

  15. Kadyrov R, Riermeier TH (2003) Highly enantioselective hydrogen-transfer reductive amination: catalytic asymmetric synthesis of primary amines. Angew Chem Int Ed 42:5472–5474

    Article  CAS  Google Scholar 

  16. Chatterjee M, Ishizaka T, Kawanami H (2016) Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen: an environmentally friendly approach. Green Chem 18:487–496

    Article  CAS  Google Scholar 

  17. Irrgang T, Kempe R (2019) 3d-metal catalyzed N- and C-alkylation reactions via borrowing hydrogen or hydrogen autotransfer. Chem Rev 119:2524–2549

    Article  PubMed  CAS  Google Scholar 

  18. Sewell G, O’Connor C, Steen E (1995) Reductive amination of ethanol with silica-supported cobalt and nickel catalysts. Appl Catal A: Gen 125:99–112

    Article  CAS  Google Scholar 

  19. Murugesan K, Beller M, Jagadeesh RV (2019) Reusable nickel nanoparticles-catalyzed reductive amination for selective synthesis of primary amines. Angew Chem Int Ed 58:5064–5068

    Article  CAS  Google Scholar 

  20. Hahn G, Kunnas P, Jonge ND, Kempe R (2018) General synthesis of primary amines via reductive amination employing a reusable nickel catalyst. Nat Catal 2:71–77

    Article  Google Scholar 

  21. Qin D, Xie D, Zheng H, Li Z, Tang J, Wei Z (2021) In-situ FTIR study of CO2 adsorption and methanation mechanism over bimetallic catalyst at low temperature. Catal Lett 151:2894–2905

    Article  CAS  Google Scholar 

  22. Liu M, Zhang J, Zheng L, Fan G, Yang L, Li F (2020) Significant promotion of surface oxygen vacancies on bimetallic CoNi nanocatalysts for hydrodeoxygenation of biomass-derived vanillin to produce methylcyclohexanol. ACS Sustain Chem Eng 8:6075–6089

    Article  CAS  Google Scholar 

  23. Yang Y, Zhou L, Wang X, Zhang L, Cheng H, Zhao F (2020) Catalytic reductive amination of furfural to furfurylamin on robust ultra-small Ni nanoparticles. Nano Res. https://doi.org/10.1007/s12274-022-4923-0

    Article  Google Scholar 

  24. Le SD, Nishimura S (2022) Selective hydrogenation of succinic acid to gamma-butyrolactone with PVP-capped CuPd catalysts. Catal Sci Technol 12:1060–1069

    Article  CAS  Google Scholar 

  25. Nishimura S, Shibata A (2019) Hydroxymethylation of furfural to HMF with aqueous formaldehyde over zeolite beta catalyst. Catalysts 9:314

    Article  Google Scholar 

  26. Nishimura S, Le SD, Asai Y, Takahashi N, Endo M, Ohmatsu S (2022) Boehmite-derived aluminum oxide catalyst for a continuous intramolecular aldol condensation of 2,5-hexanedione to 3-methyl-2-cyclopentenone in a liquid-flow reactor system. Chem Lett 51:131–134

    Article  CAS  Google Scholar 

  27. Kurniawan K, Yoshinari T, Yamada Y, Sato S (2022) Vapor-phase intramolecular aldol condensation of 2,5-hexanedione over calcium hydroxyapatite catalyst. Appl Catal A 644:118812

    Article  CAS  Google Scholar 

  28. Law YT, Dintzer T, Zafeiratos S (2011) Surface oxidation of NiCo alloy: a comparative X-ray photoelectron spectroscopy study in a wide pressure range. Appl Surf Sci 258:1480–1487

    Article  CAS  Google Scholar 

  29. Majumdar D, Spahn RG, Gau JS (1987) X-ray photoelectron spectroscopy studies on the oxidation behavior of CoNi thin films. J Electrochem Soc 134:1825–1829

    Article  CAS  Google Scholar 

  30. Paone E, Miceli M, Malara A, Ye G, Mousa E, Bontempi E, Frontera P, Mauriello F (2022) ACS Sustainable Chem Eng 10:2275–2281

    Article  CAS  Google Scholar 

  31. Amarasekara AS, Pinzon SK, Rockward T, Herath HNK (2022) Spent Li-Ion battery electrode material with lithium nickel manganese cobalt oxide as a reusable catalyst for oxidation of biofurans. ACS Sustain Chem Eng 10:12642–12650

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was received financial supports by Shibuya Science Culture and Sports Foundation 2020, Japan, and JSPS KAKENHI for Young Scientists (A) (17H04966), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Nishimura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1003 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Nishimura, S. Synthesis of 5-Hydroxymethyl-2-furfurylamine via Reductive Amination of 5-Hydroxymethyl-2-furaldehyde with Supported Ni-Co Bimetallic Catalysts. Catal Lett 154, 237–244 (2024). https://doi.org/10.1007/s10562-022-04223-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04223-9

Keywords

Navigation