Skip to main content
Log in

Solvent–Free Oxidation of Benzyl Alcohol Over Mechanochemically Prepared Fe3BO6–CeO2 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of Fe3BO6–xCeO2 (x = 1, 5, 10, 20% by mole) mixtures was prepared via ball-milling process. The physicochemical properties of the mixtures have been characterized by X-ray diffraction, Fourier Transform Infrared Spectra, Scanning Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, and N2 Adsorption–Desorption techniques. The results showed that CeO2 was well dispersed in the iron borate nano-particulate matrix after grinding. The oxidation of benzyl alcohol was investigated using the prepared catalysts. The reaction was carried out in a stirred reactor under reflux using liquid benzyl alcohol in the presence of hydrogen peroxide oxidant, focusing on the conversion and selectivity towards benzaldehyde. Optimization studies were carried out for the solvent type, temperature, reaction time, benzyl alcohol/catalyst ratio, and catalyst composition parameters. It was observed that conversion increased with CeO2 addition up to a certain molar percentage but decreased again on further addition. 34.3% conversion and 81.5% benzaldehyde selectivity were reached after 4 h of reaction at 90 °C in a solvent-free environment with the catalyst containing 5% CeO2. The catalyst was found to be stable when used under these conditions, and there was a slight decrease in its activity after three recycles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mawdsley JR, Krause TR (2008) Appl Catal A 334:311–320

    Article  CAS  Google Scholar 

  2. Zybert M, Karasińska M, Truszkiewicz E, Mierzwa B, Raróg-Pilecka W (2015) Polish Journal of Chemical Technology. 17(1).

  3. Höpfl H, Budzelaar P, Hutchinson A, Linton D, Schubert D, Talarico G, et al. (2003) Springer, Berlin, Heidelberg

  4. Joubert J, Shirk T, White W, Roy R (1968) Mater Res Bull 3:671–676

    Article  CAS  Google Scholar 

  5. Demet O, Icten O (2019) J Turkish Chem Soc 6:97–102

    Google Scholar 

  6. Kumari K (2017) J Adv Dielectr 7:1750043

    Article  CAS  Google Scholar 

  7. Rowsell J, Gaubicher J, Nazar L (2001) J Power Sour 97:254–257

    Article  Google Scholar 

  8. Burdock GA (2016) Fenaroli’s handbook of flavor ingredients. CRC Press, Boca Raton

    Book  Google Scholar 

  9. Mallat T, Baiker A (2004) Chem Rev 104:3037–3058

    Article  CAS  PubMed  Google Scholar 

  10. Wang Z, Xu C, Wang H (2014) Catal Lett 144:1919–1929

    Article  CAS  Google Scholar 

  11. Kunene A, Leteba G, van Steen E (2021) Catal Lett 152(6):1–9

    Google Scholar 

  12. Li G, Enache DI, Edwards J, Carley AF, Knight DW, Hutchings GJ (2006) Catal Lett 110:7–13

    Article  CAS  Google Scholar 

  13. Liotta L, Venezia A, Deganello G, Longo A, Martorana A, Schay Z et al (2001) Catal Today 66:271–276

    Article  CAS  Google Scholar 

  14. Martı́n SE, Suárez DF (2002) Catalytic aerobic oxidation of alcohols by Fe(NO3)3–FeBr 3. Tetrahedron Lett 43(25):4475–4479

    Article  Google Scholar 

  15. Wang N, Liu R, Chen J, Liang X (2005) Chem Commun 42(5322):5324

    Google Scholar 

  16. Jiang X, Zhang J, Ma S (2016) J Am Chem Soc 138:8344–8347

    Article  CAS  PubMed  Google Scholar 

  17. Geng L, Zhang X, Zhang W, Jia M, Liu G (2014) Chem Commun 50:2965–2967

    Article  CAS  Google Scholar 

  18. Banerjee S, Santra SJ (2013) Catal 2013:1–5

    Google Scholar 

  19. Sahu D, Silva AR, Das P (2015) RSC Adv 5:78553–78560

    Article  CAS  Google Scholar 

  20. Zheng H, Wei ZH, Hu XQ, Xu J, Xue B (2019) ChemistrySelect 4:5470–5475

    Article  CAS  Google Scholar 

  21. Nozaki A, Yasuoka T, Kuwahara Y, Ohmichi T, Mori K, Nagase T et al (2018) Ind Eng Chem Res 57:5599–5605

    Article  CAS  Google Scholar 

  22. Wei H, Li J, Yu J, Zheng J, Su H, Wang X (2015) Inorg Chim Acta 427:33–40

    Article  CAS  Google Scholar 

  23. Li X, Feng J, Perdjon M, Oh R, Zhao W, Huang X et al (2020) Appl Surf Sci 505:144473

    Article  CAS  Google Scholar 

  24. Ralphs K, Hardacre C, James SL (2013) Chem Soc Rev 42:7701–7718

    Article  CAS  PubMed  Google Scholar 

  25. Ozer D (2021) Mechanochemistry: a power tool for green synthesis. In: Inamuddin, Boddula R, Ahamed MI, Khan A (eds) Advances in green synthesis. Springer, Cham, pp 23–39

    Chapter  Google Scholar 

  26. Icten O, Hosmane NS, Kose DA, Zumreoglu-Karan BZ (2016) Anorg Allg Chem 642:828–832

    Article  CAS  Google Scholar 

  27. Xu C, De S, Balu AM, Ojeda M, Luque R (2015) Chem Commun 51:6698–6713

    Article  CAS  Google Scholar 

  28. Baláž P (2008) Mechanochemistry in minerals engineering. Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin, pp 257–296

    Chapter  Google Scholar 

  29. Meydan E, Öztürk ÖF (2016) Asian J Chem 28:1325

    Article  CAS  Google Scholar 

  30. Icten O, Eur J (2021) Inorg Chem 2021:1985–1992

    CAS  Google Scholar 

  31. Xue S-F, Wu W-Y, Bian X, Wang Z-F, Wu Y-F (2018) Green Process Synth 7:241–247

    Article  CAS  Google Scholar 

  32. Tian J, Wang B, Zhao F, Ma X, Liu Y, Liu HK et al (2017) Chem Commun 53:4698–4701

    Article  CAS  Google Scholar 

  33. Waldron R (1955) Phys Rev 99:1727

    Article  CAS  Google Scholar 

  34. Kaviyarasu K, Manikandan E, Nuru Z, Maaza M (2015) Mater Lett 160:61–63

    Article  CAS  Google Scholar 

  35. Öztürk ÖF, Zümreoğlu-Karan B, Karabulut S (2008) Catal Commun 9:1644–1648

    Article  Google Scholar 

  36. Noyori R, Aoki M, Sato K (2003) Chem Commun 16:1977–1986

    Article  Google Scholar 

  37. Balapoor L, Bikas R, Dargahi M (2020) Inorg Chim Acta 510:119734

    Article  CAS  Google Scholar 

  38. Ozer D, Icten O, Altuntas-Oztas N, Zumreoglu-Karan B (2020) Res Chem Intermed 46:909–922

    Article  CAS  Google Scholar 

  39. Li X, Li X, Zeng X, Zhu T (2019) Appl Catal A Gen 572:61–70

    Article  CAS  Google Scholar 

  40. Wang J, Yoshida A, Wang P, Yu T, Wang Z, Hao X et al (2020) Appl Catal B 271:118941

    Article  CAS  Google Scholar 

  41. Mei L, Zhaogang L, Yanhong H, Mitang W, Hangquan L (2008) J Rare Earths 26:357–361

    Article  Google Scholar 

  42. Icten O, Ozer D, Elmaci G (2021) Int J Hydrog Energy 46:39810–39821

    Article  CAS  Google Scholar 

  43. Ilieva L, Petrova P, Venezia AM, Anghel EM, State R, Avdeev G et al (2021) Catalysts 11:1316

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Hacettepe University for the financial support of this study (Project FLY-2021-19285).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Okan Icten or Birgul Zumreoglu-Karan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turgut, A.M., Ozer, D., Icten, O. et al. Solvent–Free Oxidation of Benzyl Alcohol Over Mechanochemically Prepared Fe3BO6–CeO2 Catalyst. Catal Lett 153, 1719–1725 (2023). https://doi.org/10.1007/s10562-022-04098-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04098-w

Keywords

Navigation