Skip to main content
Log in

Synthesis, Characterization and DFT-D Studies of 2-Aminoethoxycalix[4]resorcinarenes: A Novel Heterogeneous Organocatalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The present article reports the synthesis of two novel supramolecular architectures, Phenyl(octa-2-aminoethoxy)calix[4]resorcinarene and 2-Aminoethoxyphenyl-(octa-2-aminoethoxy)calix[4]resorcinarene via surface functionalization and describes their application as heterogeneous organocatalyst in the synthesis of benzoxazole derivatives. The supramolecular structure with cavities and the presence of multiple catalytic sites in the framework enhanced the catalytic activity via co-operative effect. The newly synthesised resorcinarene frameworks were properly characterized and the thermal decomposition behaviour was studied using TG/DTG analysis which indicated that the synthesised resorcinarene derivatives possessed exceptional thermal stability. Theoretical studies using DFT-D method revealed that the newly synthesised supramolecules can exist in two different conformations, particularly in chair and twisted boat conformation. This is the first reported work where the resorcinarene based supramolecular architectures are used as heterogeneous organocatalysts for the synthesis of benzoxazole derivatives.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Oliveira VDG, Cardoso MFDC, Forezi LDSM (2018) Catalysts 8:1–49

    Google Scholar 

  2. MacMillan DWC (2008) Nature 455:304–308

    Article  CAS  PubMed  Google Scholar 

  3. Doustkhah E, Baghban A, Assadi MHN, Luque R, Rostamnia S (2019) Catal Lett 149:591–600

    Article  CAS  Google Scholar 

  4. Keshavarz M, Vafaei-Nezhad M (2016) Catal Lett 146:353–363

    Article  CAS  Google Scholar 

  5. Natarajan N, Brenner E, Semeril D, Matt D, Harrowfield J (2017) Eur J Org Chem 41:6100–6113

    Article  Google Scholar 

  6. Jose T, Canellas S, Pericas MA, Kleij AW (2017) Green Chem 19:5488–5493

    Article  CAS  Google Scholar 

  7. Gambaro S, De Rosa M, Soriente A, Talotta C, Floresta G, Rescifina A, Gaeta C, Neri P (2019) Org Chem Front 6:2339–2347

    Article  CAS  Google Scholar 

  8. Kazakova EK, Makarova NA, Ziganshina AU, Muslinkina LA (2000) Tetrahedron Lett 41:10111–10115

    Article  CAS  Google Scholar 

  9. Grimme S, Antony J, Schwabe T, Muck-Lichtenfeld C (2007) Org Biomol Chem 5:741–758

    Article  CAS  PubMed  Google Scholar 

  10. Ghoshal T, Patel TM (2020) Future J Pharm Sci 6:1–24

    Article  Google Scholar 

  11. Abdelgawad MA, Al-Sanea MM, Zaki MA, Mohamed EIA, Khan SI, Tekwani BL, Chittiboyina AG, Khan IA, Al-Warhi T, Aljaeed N, Alotaibi OJ, Alkhaldi AAM, Elshemy HAH (2021) J Chem 2021:1–11

    Article  Google Scholar 

  12. Patil MR, Bhanushali JT, Nagaraja BM, Keri RS (2018) Comptes Rendus Chim 21:399–407

    Article  CAS  Google Scholar 

  13. Madhusudana Reddy MB, Nizam A, Pasha MA (2011) Synth Commun 41:1838–1842

    Article  CAS  Google Scholar 

  14. Hiba K, Shaibuna M, Sherly Mole PB, Shebitha AM, Letcy VT, Avudaiappan G, Sreekumar K (2020) J Heterocycl Chem 57:3310–3317

    Google Scholar 

  15. Doan SH, Tran CB, Cao ALN, Le NTH, Phan NTS (2019) Catal Lett 149:2053–2063

    Article  CAS  Google Scholar 

  16. Le HAN, Nguyen LH, Nguyen QNB, Nguyen HT, Nguyen KQ, Tran PH (2020) Catal Commun 145:106120

    Article  CAS  Google Scholar 

  17. Dang MHD, Nguyen LHT, Tran PH (2020) Synthesis 52:1687–1694

    Article  CAS  Google Scholar 

  18. Nguyen TB, Retailleau P (2017) Org Lett 19:3887–3890

    Article  CAS  PubMed  Google Scholar 

  19. Tian Q, Luo W, Gan Z, Li D, Dai Z, Wang H, Wang X, Yuan J (2019) Molecules 24:1–12

    Google Scholar 

  20. Song A, Chen X, Song X, Zhang X, Zhang S, Wang W (2013) Org Lett 15:2510–2513

    Article  CAS  PubMed  Google Scholar 

  21. Tero TR, Salorinne K, Lehtivuori H, Ihalainen JA, Nissinen M (2014) Chemistry 9:1860–1867

    CAS  Google Scholar 

  22. Salorinne K, Nissinen M (2009) CrystEngComm 11:1572–1578

    Article  CAS  Google Scholar 

  23. Grimme S (2004) J Comput Chem 25:1463–1473

    Article  CAS  PubMed  Google Scholar 

  24. Grimme S (2011) Wiley Interdiscip Rev Comput Mol Sci 1:211–228

    Article  CAS  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC (2004) Gaussian 03 Revision C.02. Gaussian Inc, Wallingford

    Google Scholar 

  26. Shebitha AM, Sreejith SS, Sherly Mole PB, Mohan N, Avudaiappan G, Hiba K, Priya KS, Sreekumar K (2020) J Mol Struct 1214:128215

    Article  CAS  Google Scholar 

  27. Haddenham D, Pasumansky L, Desoto J, Eagon S, Singaram B (2009) J Org Chem 5:1964–1970

    Article  Google Scholar 

  28. Crain D, Armstrong S, Brunton J, Robben T, Shaun E, Crain D, Armstrong S, Brunton J, Robben T, Shaun E (2012) Trans Kans Acad Sci 115:139–144

    Article  Google Scholar 

  29. Mikheeva VI, Troyanovskaya EA (1971) Bull Acad Sci USSR 20:2497–2500

    Article  Google Scholar 

  30. Utzig E, Pietraszkiewicz O, Pietraszkiewicz M (2004) J Therm Anal Calorim 78:973–980

    CAS  Google Scholar 

  31. Pietraszkiewicz O, Utzig E, Pietraszkiewicz M (1998) J Therm Anal 54:259–255

    Article  Google Scholar 

  32. Karakus OO, Cilgi GK, Deligoz H (2011) J Therm Anal Calorim 105:341–347

    Article  CAS  Google Scholar 

  33. Ziaja P, Krogul A, Pawłowski TS, Litwinienko G (2015) Thermochim Acta 7:1–16

    Google Scholar 

  34. Utomo SB, Saputro ANC, Rinanto Y (2016) Mater Sci Eng 107:1–10

    Article  Google Scholar 

  35. Li N, Harrison RG, Lamb JD (2014) J Incl Phenom Macrocycl Chem 78:39–60

    Article  CAS  Google Scholar 

  36. Dyson PJ, Jessop PG (2016) Catal Sci Technol 6:3302–3316

    Article  CAS  Google Scholar 

  37. Friend CM, Xu B (2017) Acc Chem Res 50:517–521

    Article  CAS  PubMed  Google Scholar 

  38. Kawashita Y, Yanagi J, Fujii T, Hayashi M (2009) Bull Chem Soc Jpn 82:482–488

    Article  CAS  Google Scholar 

  39. Zolfigol MA, Khazaei A, Alaie S, Baghery S, Maleki F, Bayat Y, Asgari A (2016) RSC Adv 6:58667–58679

    Article  CAS  Google Scholar 

  40. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  41. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  42. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  43. Da Chai J, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  44. Da Chai J, Head-Gordon M (2009) J Chem Phys 131:174105–174118

    Article  PubMed  Google Scholar 

  45. Wang XL, Liu SQ, Zhang QF (2008) Z Nat Sect B 63:945–953

    CAS  Google Scholar 

  46. Beyeh NK, Pan F, Rissanen K (2015) Angew Chem 127:7411–7415

    Article  Google Scholar 

  47. Hoegberg AGS (1980) J Org Chem 45:4498–4500

    Article  Google Scholar 

  48. Sverker Hogberg AG (1980) J Am Chem Soc 102:6046–6050

    Article  Google Scholar 

  49. Li Y, Csok Z, Kollar L, Iwata K, Szasz E, Kunsagi-Mate S (2012) Supramol Chem 24:374–378

    Article  CAS  Google Scholar 

  50. Helttunen K, Salorinne K, Barboza T, Barbosa HC, Suhonen A, Nissinen M (2012) New J Chem 36:789–795

    Article  CAS  Google Scholar 

  51. Aihara J (1999) J Phys Chem A 103:7487–7495

    Article  CAS  Google Scholar 

  52. Aihara J, Oe S, Yoshida M, Osawa E (1996) J Comput Chem 17:1387–1394

    Article  CAS  Google Scholar 

  53. Manolopoulos DE, May JC, Down SE (1991) Chem Phys Lett 181:105–111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge SAIF-CUSAT and TIFR, Hyderabad for the spectroscopic analysis. S. A. M. acknowledges Mr. Mohammed Sadik N. K., Research Scholar, Applied Chemistry, CUSAT for his timely help in computational studies. The authors acknowledges Cochin University of Science and Technology (CUAST) and UGC, Government of India for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sreekumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3278 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shebitha, A.M., Shaibuna, M., Hiba, K. et al. Synthesis, Characterization and DFT-D Studies of 2-Aminoethoxycalix[4]resorcinarenes: A Novel Heterogeneous Organocatalyst. Catal Lett 152, 3017–3030 (2022). https://doi.org/10.1007/s10562-021-03895-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03895-z

Keywords

Navigation