Skip to main content
Log in

Fe2O3/TiO2/WO3/Ti3C2Tx heterojunction composite material for efficient photoelectrochemical water splitting

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Efficient photocatalytic performance plays a pivotal role in tackling our present energy challenges. A well-designed arrangement of nanoscale semiconductors and metallic components within multi-heterojunction photocatalysts can establish rapid transport pathways, enhancing the separation and migration of charge carriers. This approach offers a viable strategy towards achieving optimal photocatalytic efficiency. Herein, the glancing angle deposition technique (GLAD) technology of electron beam evaporation and spin-coating method were used to construct Fe2O3/TiO2/WO3/Ti3C2Tx quaternary composite materials with serial heterojunctions. Photocatalytic activity was assessed through photoelectrochemical tests, revealing that the Fe2O3/TiO2/WO3/Ti3C2Tx composite material outperformed its counterparts under visible-light irradiation. Notably, it achieved the highest photocurrent response, with a maximum photocurrent density of 1.09 mA/cm2. This represented a substantial improvement, surpassing Fe2O3, Fe2O3/TiO2, and Fe2O3/TiO2/WO3 photocatalysts by factors of 36, 2.8 and 1.25, respectively. This remarkable enhancement can be attributed to the formation of three heterojunctions in series, creating multiple pathways for efficient charge transfer and separation during the photocatalytic process. Furthermore, we proposed a photocatalytic mechanism for quaternary heterojunctions based on band structure analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Q. Guo, C. Zhou, Z. Ma, X. Yang, Adv. Mater. 31, 1901997 (2019)

    Google Scholar 

  2. G. Mao, H. Wu, T. Qiu, D. Bao, L. Lai, W. Tu, Q. Liu, Chin. J. Struct. Chem. 41, 2208025 (2022)

    Google Scholar 

  3. Y. Ren, Y. Dong, Y. Feng, J. Xu, Catalysts. 8, 590 (2018)

    Google Scholar 

  4. O. Samuel, M.H.D. Othman, R. Kamaludin, O. Sinsamphanh, H. Abdullah, M.H. Puteh, T.A. Kurniawan, Ceram. Int. 48, 5845 (2022)

    Google Scholar 

  5. S.B.A. Hamid, S.J. Teh, C.W. Lai, Catalysts. 7, 93 (2017)

    Google Scholar 

  6. C. Wang, Z. Huang, Mater. Lett. 164, 194 (2016)

    Google Scholar 

  7. S.-H. Chen, Y.-S. Jiang, H.-Y. Lin, ACS Omega 5, 8927 (2020)

    PubMed  PubMed Central  Google Scholar 

  8. A.A. Al-Ghamdi, M.H. Khedr, M. Shahnawaze Ansari, P.M.Z. Hasan, M.S. Abdel-wahab, A.A. Farghali, Physica E Low-dimens. Syst. Nanostruct. 81, 83 (2016)

    ADS  Google Scholar 

  9. J. Dong, Y. Zhang, M.I. Hussain, W. Zhou, Y. Chen, L.-N. Wang, Nanomaterials. 12, 121 (2022)

    Google Scholar 

  10. S. Kumar, S. Karthikeyan, A.F. Lee, Catalysts. 8, 74 (2018)

    Google Scholar 

  11. G. Di Liberto, L.A. Cipriano, S. Tosoni, G. Pacchioni, Chem. Eur. J. 27, 13306 (2021)

    PubMed  Google Scholar 

  12. K. Li, S. Zhang, Y. Li, J. Fan, K. Lv, Chin. J. Catal. 42, 3 (2021)

    Google Scholar 

  13. M. Maimaiti, B. Zhao, M. Mamat, Y. Tuersun, A. Mijiti, Q. Wang, Y. Sun, Mater. Res. Express 6, 086408 (2019)

    ADS  Google Scholar 

  14. L. Almazroai, R.E. El-Mekawy, R. Musa, L. Ali, RSC Adv. 12, 15992 (2022)

    ADS  PubMed  PubMed Central  Google Scholar 

  15. A. Villamayor, T. Pomone, S. Perero, M. Ferraris, V.L. Barrio, E. G-Berasategui, P. Kelly, Ceram. Int. 49, 19309 (2023)

    Google Scholar 

  16. Z.-S. Pourbakhsh, K. Mohammadi, A. Moshaii, M. Azimzadehirani, A. Hosseinmardi, RSC Adv. 9, 31860 (2019)

    ADS  PubMed  PubMed Central  Google Scholar 

  17. H. Feng, S. Feng, N. Tang, S. Zhang, X. Zhang, B. Liu, RSC Adv. 11, 10300 (2021)

    ADS  PubMed  PubMed Central  Google Scholar 

  18. K. Zhang, Y. Jin, Y. Guo, H. Wang, K. Liu, W. Fu, J. Zhang, H. Pan, B. Wang, ChemistrySelect 6, 5719 (2021)

    Google Scholar 

  19. A. Habtamu, M. Ujihara, RSC Adv. 13, 12926 (2023)

    ADS  PubMed  PubMed Central  Google Scholar 

  20. Y.-F. Zhang, Y.-K. Zhu, C.-X. Lv, S.-J. Lai, W.-J. Xu, J. Sun, Y.-Y. Sun, D.-J. Yang, Rare Met. 39, 841 (2019)

    Google Scholar 

  21. M. Tahir, A. Sherryna, R. Mansoor, A.A. Khan, S. Tasleem, B. Tahir, ACS Appl. Nano Mater. 5, 18 (2022)

    Google Scholar 

  22. J. Jiang, F. Li, J. Zou, S. Liu, J. Wang, Y. Zou, K. Xiang, H. Zhang, G. Zhu, Y. Zhang, X. Fu, J.-P. Hsu, Sci. China Mater. 65, 2895 (2022)

    Google Scholar 

  23. W. Yuan, L. Cheng, Y. Zhang, H. Wu, S. Lv, L. Chai, X. Guo, L. Zheng, Adv. Mater. Interfaces 4, 1700577 (2017)

    Google Scholar 

  24. M. Davi, G. Ogutu, F. Schrader, A. Rokicinska, P. Kustrowski, A. Slabon, Eur. J. Inorg. Chem. 2017, 4267 (2017)

    Google Scholar 

  25. M.M. Nair, A.C. Iacoban, F. Neaţu, M. Florea, Ş Neaţu, J. Mater. Chem. A 11, 12559 (2023)

    Google Scholar 

  26. S. Tang, J. Yao, H. Liu, Y. Zhang, J. Environ. Chem. Eng. 10, 107099 (2022)

    Google Scholar 

  27. H. Wang, Y. Wu, T. Xiao, X. Yuan, G. Zeng, W. Tu, S. Wu, H.Y. Lee, Y.Z. Tan, J.W. Chew, Appl. Catal. B Environ. 233, 213 (2018)

    Google Scholar 

  28. A. Hankhuntod, E. Kantarak, W. Sroila, T. Kumpika, P. Singjai, W. Thongsuwan, Appl. Surf. Sci. 477, 116 (2019)

    ADS  Google Scholar 

  29. D. Yang, F. Du, Y. Ren, T. Kang, P. Hu, F. Teng, H. Fan, J. Mater. Chem. C 9, 14146 (2021)

    Google Scholar 

  30. Y.A.K. Reddy, B. Ajitha, A. Sreedhar, E. Varrla, Appl. Surf. Sci. 494, 575 (2019)

    ADS  Google Scholar 

  31. X. Wang, Y. Yang, G. Lu, G. Shi, Y. Wang, R. Wang, X. Xie, J. Sun, Appl. Surf. Sci. 531, 147101 (2020)

    Google Scholar 

  32. Y. Wang, X. Fang, J. Zeng, S. Li, X. Wang, B. Zhang, Appl. Surf. Sci. 615, 156397 (2023)

    Google Scholar 

  33. J. Cai, A. Zhang, H. Tao, R. Li, J. Han, M. Huang, Physica E Low-dimens. Syst. Nanostruct. 145, 156397 (2023)

    Google Scholar 

  34. M. Tong, J. Yang, Q. Jin, X. Zhang, J. Gao, G. Li, J. Mater. Sci. 54, 10656 (2019)

    ADS  Google Scholar 

  35. P. Jineesh, T.C. Bhagya, R. Remya, S.M.A. Shibli, Int. J. Hydrog. Energy 45, 18946 (2020)

    Google Scholar 

  36. J. Wang, Q. Zhang, F. Deng, X. Luo, D.D. Dionysiou, Chem. Eng. J. 379, 122264 (2020)

    Google Scholar 

  37. C. Yao, Z. Wang, Z. Xu, B. Jiang, Y. Yang, S. Wang, J. Alloys Compd. 941, 168920 (2023)

    Google Scholar 

  38. H. She, H. Zhou, L. Li, Z. Zhao, M. Jiang, J. Huang, L. Wang, Q. Wang, ACS Sustain. Chem. Eng. 7, 650 (2018)

    Google Scholar 

  39. M. Mersal, A.F. Zedan, G.G. Mohamed, G.K. Hassan, Sci. Rep. 13, 4431 (2023)

    ADS  PubMed  PubMed Central  Google Scholar 

  40. Y. Wang, Y. Wang, J. Zhao, M. Chen, X. Huang, Y. Xu, Appl. Catal. B Environ. 284, 119691 (2021)

    Google Scholar 

  41. N. Al-Aisaee, M. Alhabradi, X. Yang, M. Alruwaili, S. Rasul, A.A. Tahir, Solar Energy Mater. Solar Cells. 263, 112561 (2023)

    Google Scholar 

  42. P. Chatterjee, A.K. Chakraborty, Opt. Mater. 144, 114361 (2023)

    Google Scholar 

  43. X. Chen, Y. Fu, T. Kong, Y. Shang, F. Niu, Z. Diao, S. Shen, Eur. J. Inorg. Chem. 2019, 2078 (2018)

    Google Scholar 

  44. D.O.B. Apriandanu, S. Nomura, S. Nakayama, C. Tateishi, F. Amano, Catal. Today. 411–412 (2023)

  45. N. Khatun, S. Dey, G.C. Behera, S.C. Roy, Mater. Chem. Phys. 278, 125651 (2022)

    Google Scholar 

  46. J. Zhao, Mater. Res. Express. 9, 055010 (2022)

    ADS  Google Scholar 

  47. Q. Mei, F. Zhang, N. Wang, Y. Yang, R. Wu, W. Wang, RSC Adv. 9, 22764 (2019)

    ADS  PubMed  PubMed Central  Google Scholar 

  48. X. Li, Y. Fang, X. Sun, H. He, S. Li, Y. Cao, J. Mol. Struct. 1296, 136904 (2024)

    Google Scholar 

  49. C. Peng, T. Zhou, P. Wei, X. Yan, Y. Kong, W. Xu, H. Wang, H. Yu, J. Jia, K. Zhang, B. Zhou, H. Pan, Appl. Surf. Sci. 599, 154001 (2022)

    Google Scholar 

  50. X. Fang, G. Lu, A. Mahmood, Z. Tang, Z. Liu, L. Zhang, Y. Wang, J. Sun, J. Photochem. Photobiol. A Chem. 400, 112617 (2020)

    Google Scholar 

  51. D. Ramírez-Ortega, D. Guerrero-Araque, P. Acevedo-Peña, L. Lartundo-Rojas, R. Zanella, J. Mater. Sci. 55, 16641 (2020)

    ADS  Google Scholar 

  52. D. Ramírez-Ortega, A.M. Meléndez, P. Acevedo-Peña, I. González, R. Arroyo, Electrochim. Acta 140, 541 (2014)

    Google Scholar 

  53. S. Park, H. Ko, S. Kim, C. Lee, ACS Appl. Mater. Interfaces 6, 9595 (2014)

    PubMed  Google Scholar 

  54. X. Pang, S. Xue, T. Zhou, Q. Xu, W. Lei, Ceram. Int. 48, 3659 (2022)

    Google Scholar 

  55. J. Shen, J. Shen, W. Zhang, X. Yu, H. Tang, M. Zhang, D. Zulfiqar, Q. Liu, Ceram. Int. 45, 24146 (2019)

    Google Scholar 

  56. Z. Zhang, J.T. Yates, Chem. Rev. 112, 5520 (2012)

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Fundamental Research Funds for the Central Universities (Grant no. 2682021GF007), National Natural Science Foundation of China (Grant no. 51902272), Sichuan Science and Technology program (Grant nos. 2023NSFSC1911 and 2021YFG0228) and Key Laboratory of materials and surface technology, Ministry of Education (No. xxx-2023-zd007).

Author information

Authors and Affiliations

Authors

Contributions

SW: investigation, formal analysis, validation, data curation, writing—original draft. KO: conceptualization, methodology, supervision, project administration, writing—review. WZ: writing—review and editing, formal analysis. YN: writing—review and editing, formal analysis. YT: writing—review and editing, methodology. YX: conceptualization, methodology, supervision, project administration. HW: writing—review and editing, formal analysis.

Corresponding authors

Correspondence to Kai Ou or Yudong Xia.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Ou, K., Zhang, W. et al. Fe2O3/TiO2/WO3/Ti3C2Tx heterojunction composite material for efficient photoelectrochemical water splitting. Appl. Phys. A 130, 155 (2024). https://doi.org/10.1007/s00339-024-07326-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07326-9

Keywords

Navigation