Skip to main content
Log in

Solvothermal Synthesis of FDU-12 Derived Ni-Phyllosilicate Using Double Solvent of H2O and n-Pentane

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In order to inhibit the serious damage of pore structure of silica template during the conventional hydrothermal method to prepare Ni-phyllosilicate material, a solvothermal method using double solvent, a small amount of water and a large amount of hydrophobic n-pentane, was proposed to synthesize FDU-12 derived Ni-phyllosilicate in this work. Water can infiltrate the inside channels of FDU-12 owing to more hydrophilic silica hydroxyl groups, and the hydrophobic n-pentane tends to surround the outside of FDU-12. The growth of Ni-phyllosilicate occured only inside channels rather than surface, and the addition of urea could improve its formation at 180 °C in 12 h. As a result, the optimal catalyst retained the pore structure of FDU-12 and obtained fine Ni particle size of 1.5 nm after 750 °C reduction in H2 flow, which exhibited CO2 conversion of 77.0% and CH4 selectivity of 94.7% at 450 °C, 60 L·g−1·h−1. In addition, this catalyst showed high long-term stability in a 100 h-lifetime test with high anti-sintering property derived from Ni-phyllosilicate.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1.
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu Q, Tian Y (2017) Int J Hydrogen Energy 42:12295–12300

    Article  CAS  Google Scholar 

  2. Zhang Y, Yang H, Bian B, Guo Q, Liu Q (2020) ChemistrySelect 5:4913–4919

    Article  CAS  Google Scholar 

  3. Lin L, Wang G, Zhao F (2021) ChemistrySelect 6:2119–2125

    Article  CAS  Google Scholar 

  4. Mota N, Ordoez E, Pawelec B, Fierro J, Navarro R (2021) Catalysts 11:411

    Article  CAS  Google Scholar 

  5. Andrade K, Costa L, Carneiro J (2021) J Phys Chem A 12:2413–2424

    Article  Google Scholar 

  6. Dong H, Liu Q (2020) ACS Sustain Chem Eng 8:6753–6766

    Article  CAS  Google Scholar 

  7. Sivaiah M, Petit S, Barrault J, Batiot-Dupeyrat C, Valange S (2010) Catal Today 157:397–403

    Article  CAS  Google Scholar 

  8. Zhang T, Liu Q (2020) ACS Appl Mater Inter 12:19587–19600

    Article  CAS  Google Scholar 

  9. Liu Q, Dong H (2020) ACS Sustain Chem Eng 8:2093–2105

    Article  CAS  Google Scholar 

  10. Dong H, Yang H, Du Q, Zhang T, Liu Q (2019) ChemistrySelect 4:1463–1469

    Article  CAS  Google Scholar 

  11. Taghavimoghaddam J, Knowles G, Chaffee A (2012) Top Catal 55:571–579

    Article  CAS  Google Scholar 

  12. Meer J, Bardez-Giboire I, Mercier C, Revel B, Denoyel R (2010) J Phys Chem C 114:3507–3515

    Article  Google Scholar 

  13. Fang J, Zhang L, Li J, Lu L, Ma C, Cheng S, Li Z, Xiong Q, You H (2018) Nat Commun 9:521

    Article  Google Scholar 

  14. Irène L, Nissrine E, Hadjira G, Gilles W, Anne D (2006) Chem Mater 18:5826–5828

    Article  Google Scholar 

  15. Meer J, Bardez I, Bart F, Albouy P, Wallez G, Davidson A (2009) Micropor Mesopor Mat 118:183–188

    Article  Google Scholar 

  16. Chen Y, Tian Z, Liu Q, Bian B (2020) Sustain Energy Fuels 4:3042–3050

    Article  CAS  Google Scholar 

  17. Zhang Y, Yang H, Liu Q, Bian B (2020) Energy Technol-GER 8:2000165

    Article  CAS  Google Scholar 

  18. Yang H, Liu X, Liu Q, Bian B, Pang Y (2020) Energy Technol-GER 8:2000097

    Article  CAS  Google Scholar 

  19. Hartono S, Qiao S, Jack K, Ladewig B, Hao Z, Lu G (2009) Langmuir 25:6413–6424

    Article  CAS  Google Scholar 

  20. Meng Q, Du P, Wang B, Duan A, Xu C, Zhao Z, Liu C, Hu D, Li Y, Xiao C (2018) RSC Adv 8:27565–27573

    Article  CAS  Google Scholar 

  21. Ma G, Yan X, Li Y, Xiao L, Huang Z, Lu Y, Fan J (2010) J Am Chem Soc 132:9596–9597

    Article  CAS  Google Scholar 

  22. Tian Z, Liu Q, Bian B (2020) Sustain Energy Fuels 4:2396–2403

    Article  CAS  Google Scholar 

  23. Zhang T, Tian Z, Liu Q (2020) Sustain Energy Fuels 4:3438–3449

    Article  CAS  Google Scholar 

  24. Taherian Z, Khataee A, Orooji Y (2020) Micropor Mesopor Mat 306:110455

    Article  CAS  Google Scholar 

  25. Hongmanorom P, Ashok J, Zhang G, Bian Z, Wai M, Zeng Y, Xi S, Borgna A, Kawi S (2021) Appl Catal B Environ 282:119564

    Article  CAS  Google Scholar 

  26. Wei L, Kumar N, Haije W, Peltonen J, Peurla M, Grénman H, Jong W (2020) Mol Catal 494:111115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the supports from Foundation of Division of Chemical Sciences of Qingdao University of Science and Technology (No. QUSTHX201912).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Liu.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 352 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Dong, H., Zhang, T. et al. Solvothermal Synthesis of FDU-12 Derived Ni-Phyllosilicate Using Double Solvent of H2O and n-Pentane. Catal Lett 152, 1488–1494 (2022). https://doi.org/10.1007/s10562-021-03748-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03748-9

Keywords

Navigation