Skip to main content

Advertisement

Log in

C3N Non-metallic Catalyst for Propane Dehydrogenation: A Density Functional Theory Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, density functional theory is used to study the mechanism of propane dehydrogenation over non-metallic C3N catalyst. The structure, electrostatic potential and density of state of C3N are introduced, as well as the adsorption of reactants on catalyst is studied. The propane dehydrogenation reaction is divided into the first dehydrogenation and the second dehydrogenation (deep dehydrogenation). We explore the possible dehydrogenation pathways in two-step dehydrogenation. The rate control step of the first dehydrogenation is the removal of methylene hydrogen atom from propane, and its energy barrier is 47.79 kcal/mol, which reflected the catalytic activity of the catalyst. The rate control step of deep dehydrogenation is the process of removing the first hydrogen atom of the product propylene to produce the by-product. The energy barrier is 72.80 kcal/mol, which is much larger than that of the first step of dehydrogenation, reflecting the excellent selectivity of the catalyst.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang Y, Yang S, Lu J, Mei Y, He D, Luo Y (2019) Effect of a ce promoter on nonoxidative dehydrogenation of propane over the commercial Cr/Al2O3 catalyst. IndEngChem Res 58(43):19818–19824. https://doi.org/10.1021/acs.iecr.9b03870

    Article  CAS  Google Scholar 

  2. Zhang Y, Zhou Y, Qiu A, Wang Y, Xu Y, Wu P (2006) Propane dehydrogenation on PtSn/ZSM-5 catalyst: effect of tin as a promoter. CatalCommun 7(11):860–866. https://doi.org/10.1016/j.catcom.2006.03.016

    Article  CAS  Google Scholar 

  3. Fu H, Liu ZP, Li ZH, Wang WN, Fan KN (2006) Periodic density functional theory study of propane oxidative dehydrogenation over V2O5(001) surface. J Am ChemSoc 128(34):11114–11123. https://doi.org/10.1021/ja0611745

    Article  CAS  Google Scholar 

  4. Zhang Y, Zhou Y, Shi J, Zhou S, Sheng X, Zhang Z, Xiang S (2014) Comparative study of bimetallic Pt Sn catalysts supported on different supports for propane dehydrogenation. J MolCatal A Chem 381:138–147. https://doi.org/10.1016/j.molcata.2013.10.007

    Article  CAS  Google Scholar 

  5. Gao XQ, Lu WD, Hu SZ, Li WC, Lu AH (2019) Rod-shaped porous alumina-supported Cr2O3 catalyst with low acidity for propane dehydrogenation. Chin J Catal 40(2):184–191. https://doi.org/10.1016/s1872-2067(18)63202-4

    Article  CAS  Google Scholar 

  6. Liu J, Yue Y, Liu H, Da Z, Liu C, Ma A, Rong J, Su D, Bao X, Zheng H (2017) Origin of the robust catalytic performance of nanodiamond–graphene-supported pt nanoparticles used in the propane dehydrogenation reaction. ACS Catal 7(5):3349–3355. https://doi.org/10.1021/acscatal.6b03452

    Article  CAS  Google Scholar 

  7. Bauer T, Maisel S, Blaumeiser D, Vecchietti J, Taccardi N, Wasserscheid P, Bonivardi A, Görling A, Libuda J (2019) Operando DRIFTS and DFT study of propane dehydrogenation over solid- and liquid-supported gaxpty catalysts. ACS Catal 9(4):2842–2853. https://doi.org/10.1021/acscatal.8b04578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 114(20):10613–10653. https://doi.org/10.1021/cr5002436

    Article  PubMed  CAS  Google Scholar 

  9. Yang ML, Zhu J, Zhu YA, Sui ZJ, Yu YD, Zhou XG, Chen D (2014) Tuning selectivity and stability in propane dehydrogenation by shaping Pt particles: a combined experimental and DFT study. J MolCatalAChem 395:329–336. https://doi.org/10.1016/j.molcata.2014.08.008

    Article  CAS  Google Scholar 

  10. Yarusov IB, Zatolokina EV, Shitova NV, Belyi AS, Ostrovskii NM (1992) Propane dehydrogenation over Pt-Sn catalysts. Catal Today 13(4):655–658. https://doi.org/10.1016/0920-5861(92)80105-V

    Article  CAS  Google Scholar 

  11. Bariås OA, Holmen A, Blekkan EA (1996) Propane dehydrogenation over supported Pt and Pt-Sn catalysts: catalyst preparation,characterization and activity measurements. J Catal 158(1):1–12. https://doi.org/10.1006/jcat.1996.0001

    Article  Google Scholar 

  12. Takehira K, Ohishi Y, Shishido T, Kawabata T, Takaki K, Zhang Q, Wang Y (2004) behavior of active sites on Cr-MCM-41 catalysts during the dehydrogenation of propane with CO2. J Catal 224(2):404–416. https://doi.org/10.1016/j.jcat.2004.03.014

    Article  CAS  Google Scholar 

  13. Yu C, Ge Q, Xu H, Li W (2006) Effects of Ce addition on the Pt-Sn/γ-Al2O3 catalyst for propane dehydrogenation to propylene. ApplCatal A Gen 315:58–67. https://doi.org/10.1016/j.apcata.2006.08.038

    Article  CAS  Google Scholar 

  14. Shishido T, Shimamura K, Teramura K, Tanaka T (2012) Role of CO2 in dehydrogenation of propane over Cr-based catalysts. Catal Today 185(1):151–156. https://doi.org/10.1016/j.cattod.2011.10.028

    Article  CAS  Google Scholar 

  15. Zhu Y, An Z, Song H, Xiang X, Yan W, He J (2017) Lattice-confined Sn (IV/II) stabilizing raft-like pt clusters: high selectivity and durability in propane dehydrogenation. ACS Catal 7(10):6973–6978. https://doi.org/10.1021/acscatal.7b02264

    Article  CAS  Google Scholar 

  16. Hu ZP, Yang D, Wang Z, Yuan ZY (2019) State-of-the-art catalysts for direct dehydrogenation of propane to propylene. Chin J Catal 40(9):1233–1254. https://doi.org/10.1016/S1872-2067(19)63360-7

    Article  CAS  Google Scholar 

  17. Sun P, Siddiqi G, Vining WC, Chi M, Bell AT (2011) Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation. J Catal 282(1):165–174. https://doi.org/10.1016/j.jcat.2011.06.008

    Article  CAS  Google Scholar 

  18. Santhosh Kumar M, Hammer N, Rønning M, Holmen A, Chen D, Walmsley JC, Øye G (2009) The nature of active chromium species in Cr-catalysts for dehydrogenation of propane: new insights by a comprehensive spectroscopic study. J Catal 261(1):116–128. https://doi.org/10.1016/j.jcat.2008.11.014

    Article  CAS  Google Scholar 

  19. Otroshchenko TP, Rodemerck U, Linke D, Kondratenko EV (2017) Synergy effect between Zr and Cr active sites in binary CrZrOx or supported CrOx/LaZrOx: consequences for catalyst activity, selectivity and durability in non-oxidative propane dehydrogenation. J Catal 356:197–205. https://doi.org/10.1016/j.jcat.2017.10.012

    Article  CAS  Google Scholar 

  20. Mitchell PCH, Wass SA (2002) Propane dehydrogenation over molybdenum hydrotalcite catalysts. ApplCatal A Gen 225(1):153–165. https://doi.org/10.1016/S0926-860X(01)00862-6

    Article  CAS  Google Scholar 

  21. Hu B, Schweitzer NM, Zhang G, Kraft SJ, Childers DJ, Lanci MP, Miller JT, Hock AS (2015) Isolated feii on silica as a selective propane dehydrogenation catalyst. ACS Catal 5(6):3494–3503. https://doi.org/10.1021/acscatal.5b00248

    Article  CAS  Google Scholar 

  22. Camacho-Bunquin J, Aich P, Ferrandon M, Bean Getsoian A, Das U, Dogan F, Curtiss LA, Miller JT, Marshall CL, Hock AS, Stair PC (2017) Single-site zinc on silica catalysts for propylene hydrogenation and propane dehydrogenation: synthesis and reactivity evaluation using an integrated atomic layer deposition-catalysis instrument. J Catal 345:170–182. https://doi.org/10.1016/j.jcat.2016.10.017

    Article  CAS  Google Scholar 

  23. Cybulskis VJ, Pradhan SU, Lovón-Quintana JJ, Hock AS, Hu B, Zhang G, Delgass WN, Ribeiro FH, Miller JTJCL (2017) The nature of the isolated gallium active center for propane dehydrogenation on Ga/SiO2. CatalLett 147(5):1252–1262. https://doi.org/10.1007/s10562-017-2028-2

    Article  CAS  Google Scholar 

  24. Schweitzer NM, Hu B, Das U, Kim H, Greeley J, Curtiss LA, Stair PC, Miller JT, Hock AS (2014) Propylene hydrogenation and propane dehydrogenation by a single-site Zn2+ on silica catalyst. ACS Catal 4(4):1091–1098. https://doi.org/10.1021/cs401116p

    Article  CAS  Google Scholar 

  25. Raman N, Maisel S, Grabau M, Taccardi N, Debuschewitz J, Wolf M, Wittkämper H, Bauer T, Wu M, Haumann M, Papp C, Görling A, Spiecker E, Libuda J, Steinrück H-P, Wasserscheid P (2019) Highly effective propane dehydrogenation using Ga–Rh supported catalytically active liquid metal solutions. ACS Catal 9(10):9499–9507. https://doi.org/10.1021/acscatal.9b02459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kim Wg, So J, Choi SW, Liu Y, Dixit RS, Sievers C, Sholl DS, Nair S, Jones CW (2017) Hierarchical Ga-MFI catalysts for propane dehydrogenation. Chem Mater 29(17):7213–7222. https://doi.org/10.1021/acs.chemmater.7b01566

    Article  CAS  Google Scholar 

  27. Yang ML, Zhu YA, Fan C, Sui ZJ, Chen D, Zhou XG (2011) DFT study of propane dehydrogenation on Pt catalyst: effects of step sites. PhysChemChemPhys 13(8):3257. https://doi.org/10.1039/c0cp00341g

    Article  CAS  Google Scholar 

  28. Yang ML, Zhu YA, Zhou XG, Sui ZJ, Chen D (2012) First-principles calculations of propane dehydrogenation over PtSn catalysts. ACS Catal 2(6):1247–1258. https://doi.org/10.1021/cs300031d

    Article  CAS  Google Scholar 

  29. Cao X, Ji Y, Luo Y (2015) Dehydrogenation of propane to propylene by a Pd/Cu single-atom catalyst: insight from first-principles calculations. J PhysChem C 119(2):1016–1023. https://doi.org/10.1021/jp508625b

    Article  CAS  Google Scholar 

  30. Tuo Y, Yang L, Cheng H, Yang M, Zhu YA, Li P (2018) Density functional theory study of decalin dehydrogenation for hydrogen release on Pt(111)and Pt(211). Int J Hydrog Energy 43(42):19575–19588. https://doi.org/10.1016/j.ijhydene.2018.09.002

    Article  CAS  Google Scholar 

  31. Sun X, Liu M, Huang Y, Li B, Zhao Z (2019) Electronic interaction between single Pt atom and vacancies on boron nitride nanosheets and its influence on the catalytic performance in the direct dehydrogenation of propane. Chin J Catal 40(6):819–825. https://doi.org/10.1016/S1872-2067(18)63196-1

    Article  CAS  Google Scholar 

  32. Song Y, Liu G, Yuan ZY (2016) N-, P- and B-doped mesoporous carbons for direct dehydrogenation of propane. RSC Adv 6(97):94636–94642. https://doi.org/10.1039/c6ra20726j

    Article  CAS  Google Scholar 

  33. Frank B, Zhang J, Blume R, Schlogl R, Su DS (2009) Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons. AngewChemInt Ed Engl 48(37):6913–6917. https://doi.org/10.1002/anie.200901826

    Article  CAS  Google Scholar 

  34. Khavryuchenko OV, Frank B, Trunschke A, Hermann K, Schlögl R (2013) Quantum-chemical investigation of hydrocarbon oxidative dehydrogenation over spin-active carbon catalyst clusters. J PhysChem C 117(12):6225–6234. https://doi.org/10.1021/jp312548g

    Article  CAS  Google Scholar 

  35. Grant JT, Carrero CA, Goeltl F, Venegas J, Mueller P, Burt SP, Specht SE, McDermott WP, Chieregato A, Hermans I (2016) Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts. Science 354(6319):1570–1573. https://doi.org/10.1126/science.aaf7885

    Article  PubMed  CAS  Google Scholar 

  36. Sun X, Li B, Su D (2016) The unexpected reactivity of the carbon sites on the nanostructured carbon catalysts towards the C−H Bond activation from the analysis of the aromaticity. Chem -Asian J 11(11):1668–1671. https://doi.org/10.1002/asia.201600222

    Article  PubMed  CAS  Google Scholar 

  37. Li X, Zhu L, Xue Q, Chang X, Ling C, Xing WJA (2017) Superior selective CO2 adsorption of C3N pores: GCMC and DFT simulations. ACS Appl Mater Interfaces 9(36):31161–31169. https://doi.org/10.1021/acsami.7b09648

    Article  PubMed  CAS  Google Scholar 

  38. Makaremi M, Mortazavi B, Singh CVJTJ (2017) Adsorption of metallic, metalloidic, and nonmetallic adatoms on two-dimensional C3N. J PhysChem C 121(34):18575–18583. https://doi.org/10.1021/acs.jpcc.7b04511

    Article  CAS  Google Scholar 

  39. Bafekry A, FarjamiShayesteh S, Peeters FMJTJ (2019) C3N monolayer: exploring the emerging of novel electronic and magnetic properties with adatom adsorption, functionalizations, electric field, charging, and strain. J PhysChem C 123(19):12485–12499. https://doi.org/10.1021/acs.jpcc.9b02047

    Article  CAS  Google Scholar 

  40. Mortazavi B (2017) Ultra high stiffness and thermal conductivity of graphene like C3N. Carbon 118:25–34. https://doi.org/10.1016/j.carbon.2017.03.029

    Article  CAS  Google Scholar 

  41. Frisch M, Trucks G, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GJI (2009) Gaussian 09, Revision d 01. Gaussian, Wallingford CT, p 201

    Google Scholar 

  42. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  43. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J ChemPhys 132:15. https://doi.org/10.1063/1.3382344

    Article  CAS  Google Scholar 

  44. Van Duijneveldt FB, van Duijneveldt-vandeRijdt JG, van Lenthe JHJCR (1994) State of the art in counterpoise theory. Chem Rev 94(7):1873–1885

    Article  Google Scholar 

  45. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J ChemPhys 90(4):2154–2161. https://doi.org/10.1063/1.456010

    Article  CAS  Google Scholar 

  46. Gonzalez C, Schlegel HBJJ (1990) Reaction path following in mass-weighted internal coordinates. J PhysChem 94(14):5523–5527

    CAS  Google Scholar 

  47. Shi LB, Zhang YY, Xiu XM, Dong HK (2018) Carbon 134:103–111. https://doi.org/10.1016/j.carbon.2018.03.076

    Article  CAS  Google Scholar 

  48. Yang S, Li W, Ye C, Wang G, Tian H, Zhu C, He P, Ding G, Xie X, Liu Y, Lifshitz Y, Lee ST, Kang Z, Jiang M (2017) C3N—A 2D crystalline, hole-free, tunable-narrow-bandgap semiconductor with ferromagnetic properties. Adv Mater 29(16):1605625. https://doi.org/10.1002/adma.201605625

    Article  CAS  Google Scholar 

  49. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J ComputChem 33(5):580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  Google Scholar 

  50. Caspary KJ, Gehrke H, Heinritz-Adrian M, Schwefer M (2008) Dehydrogenation of alkanes. Wiley, Hoboken, pp 3206–3229

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Kang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1044 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Kang, L. & Ren, W. C3N Non-metallic Catalyst for Propane Dehydrogenation: A Density Functional Theory Study. Catal Lett 151, 3154–3164 (2021). https://doi.org/10.1007/s10562-021-03564-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03564-1

Keywords

Navigation