Skip to main content
Log in

Effect of Preparation Technique on the Performance of Ni and Ce Incorporated Modified Alumina Catalysts in CO2 Reforming of Methane

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Performances of modified sol–gel alumina (MSGA) based catalysts, synthesized in an inert atmosphere and activated by Ni and Ce were investigated in CO2 reforming of methane. Two different incorporation methods were used to dope Ce into the structure of the catalysts: (i) simultaneous impregnation of Ce together with Ni (Ni–Ce@MSGA), (ii) one-pot synthesis of Ce incorporated alumina support material (Ni@Ce-MSGA). In the second case Ni was impregnated on the Ce-MSGA support. Synthesized catalysts were characterized using TPR, XRD, N2 adsorption/desorption, pyridine adsorbed DRIFT, CO2-TPD techniques. These analyses showed that the synthesized catalysts possessed reduced Ni particles, as well as mesoporous structure, Lewis acid sites and moderate basicity. The modified sol–gel alumina and modified sol–gel Ce-MSGA supported catalysts showed stable activity in CO2 reforming of methane. Ce incorporation improved catalytic activity of the synthesized catalysts and reduced the occurrence of reverse water gas shift reaction. Ni–Ce@MSGA catalyst decreased the CO2/CH4 conversion ratio much higher than Ni@Ce-MSGA catalyst. Coke analysis were determined using TGA/DTA, XRD, and SEM analysis. Especially, simultaneous impregnation of Ce and Ni catalyst inhibited coke deposition significantly due to lattice oxygen of ceria. However, coke deposition over Ni@Ce-MSGA catalyst was higher than Ni@MSGA catalyst since Ni@Ce-MSGA catalyst has higher nickel crystal size than that of Ni@MSGA catalyst.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Global greenhouse gas emissions data (2019). https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data. Accessed 12 June 2019

  2. Arbag H, Yasyerli S, Yasyerli N, Dogu G (2010) Activity and stability enhancement of Ni-MCM-41 catalysts by Rh incorporation for hydrogen from dry reforming of methane. Int J Hydrog Energy 35:2296–2304. https://doi.org/10.1016/j.ijhydene.2009.12.109

    Article  CAS  Google Scholar 

  3. Yasyerli S, Filizgok S, Arbag H, Yasyerli N, Dogu G (2011) Ru incorporated Ni/MCM-41 mesoporous catalysts for dry reforming of methane: effects of Mg addition, feed composition and temperature. Int J Hydrog Energy 36:4863–4874. https://doi.org/10.1016/j.ijhydene.2011.01.120

    Article  CAS  Google Scholar 

  4. Arbag H (2018) Effect of impregnation sequence of Mg on performance of mesoporous alumina supported Ni catalyst in dry reforming of methane. Int J Hydrog Energy 43:6561–6574. https://doi.org/10.1016/j.ijhydene.2018.02.063

    Article  CAS  Google Scholar 

  5. Park JH, Yeo S, Chang TS (2018) Effect of supports on the performance of Co-based catalysts in methane dry reforming. J CO2 Util 26:465–475. https://doi.org/10.1016/j.jcou.2018.06.002

    Article  CAS  Google Scholar 

  6. Swirk K, Galvez ME, Motak M, Grzybek T, Ronning M (2018) Yttrium promoted Ni-based double-layered hydroxides for dry methane reforming. J CO2 Util 27:247–258. https://doi.org/10.1016/j.jcou.2018.08.004

    Article  CAS  Google Scholar 

  7. Fang X, Zhang J, Liu J, Wang C, Huang Q, Xu X, Peng H, Liu W, Wang X, Zhou W (2018) Methane dry reforming over Ni/Mg–Al–O: on the significant promotional effects of rare earth Ce and Nd metal oxides. J CO2 Util 25:242–253. https://doi.org/10.1016/j.jcou.2018.04.011

    Article  CAS  Google Scholar 

  8. Arbag H, Yasyerli S, Yasyerli N, Dogu T, Dogu G (2013) Coke minimization in dry reforming of methane by Ni based mesoporous alumina catalysts synthesized following different routes: effects of W and Mg. Top Catal 56:1695–1707. https://doi.org/10.1007/s11244-013-0105-3

    Article  CAS  Google Scholar 

  9. Arbag H, Yasyerli S, Yasyerli N, Dogu G, Dogu T, Crnivec IGO, Pintar A (2015) Coke minimization during conversion of biogas to syngas by bimetallic tungsten−nickel incorporated mesoporous alumina synthesized by the one-pot route. Ind Eng Chem Res 54:2290–2301. https://doi.org/10.1021/ie504477t

    Article  CAS  Google Scholar 

  10. Arbag H, Yasyerli S, Yasyerli N, Dogu G, Dogu T (2016) Enhancement of catalytic performance of Ni based mesoporous alumina by Co incorporation in conversion of biogas to synthesis gas. Appl Catal B 198:254–265. https://doi.org/10.1016/j.apcatb.2016.05.064

    Article  CAS  Google Scholar 

  11. Meric GG, Arbag H, Degirmenci L (2017) Coke minimization via SiC formation in dry reforming of methane conducted in the presence of Ni-based core–shell microsphere catalysts. Int J Hydrog Energy 42:16579–16588. https://doi.org/10.1016/j.ijhydene.2017.05.121

    Article  CAS  Google Scholar 

  12. Erdogan B, Arbag H, Yasyerli N (2018) SBA-15 supported mesoporous Ni and Co catalysts with high coke resistance for dry reforming of methane. Int J Hydrog Energy 43:1396–1405. https://doi.org/10.1016/j.ijhydene.2017.11.127

    Article  CAS  Google Scholar 

  13. Osawa T, Tamagawa K (2019) Studies of ceria and zirconia promotion of nickel catalyst for carbon dioxide reforming of methane. Catal Lett 149:1579–1588. https://doi.org/10.1007/s10562-019-02750-6

    Article  CAS  Google Scholar 

  14. Movasati A, Alavi SM, Mazloom G (2019) Dry reforming of methane over CeO2–ZnAl2O4 supported Ni and Ni–Co nanocatalysts. Fuel 236:1254–1262. https://doi.org/10.1016/j.fuel.2018.09.069

    Article  CAS  Google Scholar 

  15. Wang H, Dong X, Zhao T, Yu H, Li M (2019) Dry reforming of methane over bimetallic Ni–Co catalyst prepared from La(CoxNi1−x)0.5Fe0.5O3 perovskite precursor: catalytic activity and coking resistance. Appl Catal B 245:302–313. https://doi.org/10.1016/j.apcatb.2018.12.072

    Article  CAS  Google Scholar 

  16. Luisetto I, Tuti S, Romano C, Boaro M, Bartolomeo ED (2019) Dry reforming of methane over Ni supported on doped CeO2: new insight on the role of dopants for CO2 activation. J CO2 Util 30:63–78. https://doi.org/10.1016/j.jcou.2019.01.006

    Article  CAS  Google Scholar 

  17. Alvarez A, Bobadilla LF, Garcilaso V, Centeno MA, Odriozola JA (2018) CO2 reforming of methane over Ni–Ru supported catalysts: on the nature of active sites by operando DRIFTS study. J CO2 Util 24:509–515. https://doi.org/10.1016/j.jcou.2018.01.027

    Article  CAS  Google Scholar 

  18. Mahoney EG, Pusel JM, Stagg-Williams SM, Faraji S (2014) The effects of Pt addition to supported Ni catalysts on dry (CO2) reforming of methane to syngas. J CO2 Util 6:40–44. https://doi.org/10.1016/j.jcou.2014.01.003

    Article  CAS  Google Scholar 

  19. Akbari E, Alavi SM, Rezaei M (2018) CeO2 promoted Ni–MgO–Al2O3 nanocatalysts for carbon dioxide reforming of methane. J CO2 Util 24:128–138. https://doi.org/10.1016/j.jcou.2017.12.015

    Article  CAS  Google Scholar 

  20. Kambolis A, Matralis H, Trovarelli A, Papadopoulou C (2010) Ni/CeO2–ZrO2 catalysts for the dry reforming of methane. Appl Catal A 377:16–26. https://doi.org/10.1016/j.apcata.2010.01.013

    Article  CAS  Google Scholar 

  21. Damyanova S, Pawelec B, Arishtirova K, Fierro JLG (2012) Ni-based catalysts for reforming of methane with CO2. Int J Hydrog Energy 37:15966–15975. https://doi.org/10.1016/j.ijhydene.2012.08.056

    Article  CAS  Google Scholar 

  22. Djinovic P, Osojnik IGC, Erjavec B, Pintar A (2012) Influence of active metal loading and oxygen mobility on coke free dry reforming of Ni–Co bimetallic catalysts. Appl Catal B 125:259–270. https://doi.org/10.1016/j.apcatb.2012.05.049

    Article  CAS  Google Scholar 

  23. Mustu H, Yasyerli S, Yasyerli N, Dogu G, Dogu T, Djinovic P, Pintar A (2015) Effect of synthesis route of mesoporous zirconia-based Ni catalysts on coke minimization in conversion of biogas to synthesis gas. Int J Hydrog Energy 40:3217–3228. https://doi.org/10.1016/j.ijhydene.2015.01.023

    Article  CAS  Google Scholar 

  24. Horlyck J, Lawrey C, Lovell EC, Amal R, Scott J (2018) Elucidating the impact of Ni and Co loading on the selectivity of bimetallic Ni–Co catalysts for dry reforming of methane. Chem Eng J 352:572–580. https://doi.org/10.1016/j.cej.2018.07.009

    Article  CAS  Google Scholar 

  25. Nguyen TGH, Tran DL, Sakamoto M, Uchida T, Sasaki K, To TD, Doan DCT, Dang MC, Shiratori Y (2018) Ni-loaded (Ce, Zr)O2−δ dispersed paper-structured catalyst for dry reforming of methane. Int J Hydrog Energy 43:4951–4960. https://doi.org/10.1016/j.ijhydene.2018.01.118

    Article  CAS  Google Scholar 

  26. García-Diéguez M, Pieta IS, Herrera MC, Larrubia MA, Alemany LJ (2010) Nanostructured Pt- and Ni-based catalysts for CO2-reforming of methane. J Catal 270:136–145. https://doi.org/10.1016/j.jcat.2009.12.010

    Article  CAS  Google Scholar 

  27. Yu X, Zhang F, Wang N, Hao S, Chu W (2014) Plasma-treated bimetallic Ni–Pt catalysts derived from hydrotalcites for the carbon dioxide reforming of methane. Catal Lett 144:293–300. https://doi.org/10.1007/s10562-013-1130-3

    Article  CAS  Google Scholar 

  28. Movasati A, Alavi SM, Mazloom G (2017) CO2 reforming of methane Ni/ZnAl2O4 catalysts: influence of Ce addition on activity and stability. Int J Hydrog Energy 42:16436–16448. https://doi.org/10.1016/j.ijhydene.2017.05.199

    Article  CAS  Google Scholar 

  29. Liu H, Da Costa P, Taief HBH, Benzina M, Galvez ME (2017) Ceria and zirconia modified natural clay based nickel catalysts for dry reforming of methane. Int J Hydrog Energy 42:23508–23516. https://doi.org/10.1016/j.ijhydene.2017.01.075

    Article  CAS  Google Scholar 

  30. Debek R, Motak M, Galvez ME, Da Costa P, Grzybek T (2017) Catalytic activity of hydrotalcied-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition. React Kinet Mech Catal 121:185–208. https://doi.org/10.1007/s11144-017-1167-1

    Article  CAS  Google Scholar 

  31. Le Saché E, Santos JL, Smith TJ, Centeno MA, Arellano-Garcia H, Odriozola JA, Reina TR (2018) Multicomponent Ni–CeO2 nanocatalysts for syngas production from CO2/CH4 mixtures. J CO2 Util 25:68–78. https://doi.org/10.1016/j.jcou.2018.03.012

    Article  CAS  Google Scholar 

  32. Xie Z, Yan B, Kattel S, Lee JH, Yao S, Wu Q, Rui N, Gomez E, Liu Z, Xu W, Zhang L, Chen JG (2018) Dry reforming of methane over CeO2-supported Pt–Co catalysts with enhanced activity. Appl Catal B 236:280–293. https://doi.org/10.1016/j.apcatb.2018.05.035

    Article  CAS  Google Scholar 

  33. Aghamohammadi S, Haghighi M, Maleki M, Rahemi N (2017) Sequential impregnation vs. sol–gel synthesized Ni/Al2O3–CeO2 nanocatalyst for dry reforming of methane: effect of synthesis method and support promotion. Mol Catal 431:39–48. https://doi.org/10.1016/j.mcat.2017.01.012

    Article  CAS  Google Scholar 

  34. Ocsachoque M, Pompeo F, Gonzalez G (2011) Rh–Ni/CeO2–Al2O3 catalysts for methane dry reforming. Catal Today 172:226–231. https://doi.org/10.1016/j.cattod.2011.02.057

    Article  CAS  Google Scholar 

  35. Al-Fatesh AS, Atia H, Abu-Dahrieh JK, Ibrahim AA, Eckelt R, Armbruster U, Abasaeed AE, Fakeeha AH (2019) Hydrogen production from CH4 dry reforming over Sc promoted Ni/MCM-41. Int J Hydrog Energy 44:20770–20781. https://doi.org/10.1016/j.ijhydene.2018.07.036

    Article  CAS  Google Scholar 

  36. Zhang Q, Sun M, Ning P, Long K, Wang J, Tang T, Fan J, Sun H, Yin L, Lin Q (2019) Effect of thermal induction temperature on re-dispersion behavior of Ni nanoparticles over Ni/SBA-15 for dry reforming of methane. Appl Surf Sci 469:368–377. https://doi.org/10.1016/j.apsusc.2018.10.222

    Article  CAS  Google Scholar 

  37. Damyanova S, Pawelec B, Arishtirova K, Fierro JLG, Sener C, Dogu T (2009) MCM-41 supported PdNi catalysts for dry reforming of methane. Appl Catal B 92:250–261. https://doi.org/10.1016/j.apcatb.2009.07.032

    Article  CAS  Google Scholar 

  38. Wang N, Yu X, Wang Y, Chu W, Liu M (2013) A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier. Catal Today 212:98–107. https://doi.org/10.1016/j.cattod.2012.07.022

    Article  CAS  Google Scholar 

  39. Jang WJ, Shim JO, Kim HM, Yoo SY, Roh HS (2019) A review on dry reforming of methane in aspect of catalytic properties. Catal Today 324:15–26. https://doi.org/10.1016/j.cattod.2018.07.032

    Article  CAS  Google Scholar 

  40. Gunduz S, Dogu T (2015) Hydrogen by steam reforming of ethanol over Co–Mg incorporated novel mesoporous alumina catalysts in tubular and microwave reactors. Appl Catal B 168–169:497–508. https://doi.org/10.1016/j.apcatb.2015.01.006

    Article  CAS  Google Scholar 

  41. Ni J, Zhao J, Chen L, Lin J, Kawi S (2016) Lewis acid sites stabilized nickel catalysts for dry (CO2) reforming of methane. ChemCatChem 8:3732–3739. https://doi.org/10.1002/cctc.201601002

    Article  CAS  Google Scholar 

  42. Das S, Sengupta M, Patel J, Bordoloi A (2017) A study of the synergy between support surface properties and catalyst deactivation for CO2 reforming over supported Ni nanoparticles. Appl Catal A 545:113–126. https://doi.org/10.1016/j.apcata.2017.07.044

    Article  CAS  Google Scholar 

  43. Masai M, Kado H, Miyake A, Nishiyama S, Tsuruya S (1988) Methane reforming by carbon dioxide and steam over supported Pd, Pt, and Rh catalysts. Stud Surf Sci Catal 36:67–71. https://doi.org/10.1016/S0167-2991(09)60500-0

    Article  CAS  Google Scholar 

  44. Shin SA, Noh YS, Hong GH, Park JI, Song HT, Lee KY, Moon DJ (2018) Dry reforming of methane over Ni/ZrO2–Al2O3 catalysts: effect of preparation methods. J Taiwan Inst Chem Eng 90:25–32. https://doi.org/10.1016/j.jtice.2017.11.032

    Article  CAS  Google Scholar 

  45. Tasdemir HM, Yagizatli Y, Yasyerli S, Yasyerli N (2019) The catalytic performance of sol–gel alumina supported Ti–Ce catalysts for H2S selective oxidation to elemental sulfur. Int J Chem React Eng 17:1–10. https://doi.org/10.1515/ijcre-2018-0157

    Article  CAS  Google Scholar 

  46. Tasdemir HM (2019) The catalytic activity enhancement of commercial TiO2 and Nb2O5 catalysts by iron for elemental sulfur production from H2S. Catal Lett 149:473–485. https://doi.org/10.1007/s10562-018-2634-7

    Article  CAS  Google Scholar 

  47. Kim P, Kim Y, Kim H, Song IK, Yi J (2004) Synthesis and characterization of mesoporous alumina with nickel incorporated for use in the partial oxidation of methane into synthesis gas. Appl Catal A 272:157–166. https://doi.org/10.1016/j.apcata.2004.05.055

    Article  CAS  Google Scholar 

  48. Joo OS, Jung KD (2002) CH4 dry reforming on alumina-supported nickel catalyst. Bull Korean Chem Soc 23:1149–1153. https://doi.org/10.5012/bkcs.2002.23.8.1149

    Article  CAS  Google Scholar 

  49. Atribak I, Bueno-López A, García-García A (2008) Combined removal of diesel soot particulates and NOx over CeO2–ZrO2 mixed oxides. J Catal 259:123–132. https://doi.org/10.1016/j.jcat.2008.07.016

    Article  CAS  Google Scholar 

  50. Chen CS, Budi CS, Wu HC, Saikia D, Kao HM (2017) Size-tunable Ni nanoparticles supported on surface-modified, cage-type mesoporous silica as highly active catalysts for CO2 hydrogenation. ACS Catal 7:8367–8381. https://doi.org/10.1021/acscatal.7b02310

    Article  CAS  Google Scholar 

  51. Cakiryilmaz N, Arbag H, Oktar N, Dogu G, Dogu T (2019) Catalytic performances of Ni and Cu impregnated MCM-41 and Zr-MCM-41 for hydrogen production through steam reforming of acetic acid. Catal Today 323:191–199. https://doi.org/10.1016/j.cattod.2018.06.004

    Article  CAS  Google Scholar 

  52. Cakiryilmaz N, Arbag H, Oktar N, Dogu G, Dogu T (2018) Effect of W incorporation on the product distribution in steam reforming of bio-oil derived acetic acid over Ni based Zr-SBA-15 catalyst. Int J Hydrog Energy 43:3629–3642. https://doi.org/10.1016/j.ijhydene.2018.01.034

    Article  CAS  Google Scholar 

  53. Tasdemir HM, Yagizatli Y, Yasyerli S, Yasyerli N, Dogu G (2019) A new sol–gel route alumina for selective oxidation of H2S to sulphur. Can J Chem Eng. https://doi.org/10.1002/cjce.23609

    Article  Google Scholar 

  54. Yasyerli S, Aktas O (2012) MCF supported V-Mo–Nb catalysts prepared by direct hydrothermal synthesis and impregnation methods for oxidative dehydrogenation of propane. J Fac Eng Archit Gazi 27:49–58

    Google Scholar 

  55. Liu X, Truitt RE (1997) DRIFT-IR studies of the surface of γ-alumina. J Am Chem Soc 119:9856–9860. https://doi.org/10.1021/ja971214s

    Article  CAS  Google Scholar 

  56. Zaki MI, Hussein GAM, Mansour SAA, Ismail HM, Mekhemer GAH (1997) Ceria on silica and alumina catalysts: dispersion and surface acid–base properties as probed by X-ray diffractometry, UV–Vis diffuse reflectance and in situ IR absorption studies. Colloid Surf A 127:47–56. https://doi.org/10.1016/S0927-7757(96)03943-X

    Article  CAS  Google Scholar 

  57. Camposeco R, Castillo S, Mejia-Centeno I, Navarrete J, Rodriguez-Gonzalez V (2016) Behavior of Lewis and Brönsted surface acidity featured by Ag, Au, Ce, La, Fe, Mn, Pd, Pt, V and W decorated on protonated titanate nanotubes. Microporous Mesoporous Mater 236:235–243. https://doi.org/10.1016/j.micromeso.2016.08.033

    Article  CAS  Google Scholar 

  58. Zhou Y, Jiang Y, Qin Z, Xie Q, Ji H (2018) Influence of Zr, Ce, and La on Co3O4 catalyst for CO2 methanation at low temperature. Chin J Chem Eng 26:768–774. https://doi.org/10.1016/j.cjche.2017.10.014

    Article  CAS  Google Scholar 

  59. Dębek R, Radlik M, Motak M, Galvez ME, Turek W, Da Costa P, Grzybek T (2015) Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature—on the effect of basicity. Catal Today 257:59–65. https://doi.org/10.1016/j.cattod.2015.03.017

    Article  CAS  Google Scholar 

  60. Hussain ST, Hasan G (2011) Effect of K addition and acidification of zeolite support on the performance of Zr:Mo/HZSM-5 modified catalyst in methane aromatization. Open Catal J 4:36–42. https://doi.org/10.2174/1876214X01104010036

    Article  CAS  Google Scholar 

  61. Al-Khattaf S, D’Agostino C, Akhtar MN, Al-Yassir N, Tan NY, Gladden LF (2014) The effect of coke deposition on the activity and selectivity of the HZSM-5 zeolite during ethylbenzene alkylation reaction in the presence of ethanol. Catal Sci Technol 4:1017–1027. https://doi.org/10.1039/c3cy00925d

    Article  CAS  Google Scholar 

  62. Feng R, Liu S, Bai P, Qiao K, Wang Y, Al-Megren HA, Rood MJ, Yan Z (2014) Preparation and characterization of γ-Al2O3 with rich Brønsted acid sites and its application in the fluid catalytic cracking process. J Phys Chem C 118:6226–6234. https://doi.org/10.1021/jp411405r

    Article  CAS  Google Scholar 

  63. Laosiripojana N, Assabumrungrat S (2005) Catalytic dry reforming of methane over high surface area ceria. Appl Catal B 60:107–116. https://doi.org/10.1016/j.apcatb.2005.03.001

    Article  CAS  Google Scholar 

  64. Wolfbeisser A, Sophiphun O, Bernardi J, Wittayakun J, Föttinger K, Rupprechter G (2016) Methane dry reforming over ceria-zirconia supported Ni catalysts. Catal Today 277:234–245. https://doi.org/10.1016/j.cattod.2016.04.025

    Article  CAS  Google Scholar 

  65. Khani Y, Shariatinia Z, Bahadoran F (2016) High catalytic activity and stability of ZnLaAlO4 supported Ni, Pt and Ru nanocatalysts applied in the dry, steam and combined dry-steam reforming of methane. Chem Eng J 299:353–366. https://doi.org/10.1016/j.cej.2016.04.108

    Article  CAS  Google Scholar 

  66. Ha QLM, Armbruster U, Atia H, Schneider M, Lund H, Agostini G, Radnik J, Vuong HT, Martin A (2017) Development of active and stable low nickel content catalysts for dry reforming of methane. Catalysts 7:157–173. https://doi.org/10.3390/catal7050157

    Article  CAS  Google Scholar 

  67. Al-Fatesh ASA, Fakeeha AH, Abasaeed AE (2011) Effects of selected promoters on Ni/γ-Al2O3 catalyst performance in methane dry reforming. Chin J Catal 32:1604–1609. https://doi.org/10.1016/S1872-2067(10)60267-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Gazi University Research Fund (06-2017-10) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mehmet Tasdemir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbag, H., Tasdemir, H.M., Yagizatli, Y. et al. Effect of Preparation Technique on the Performance of Ni and Ce Incorporated Modified Alumina Catalysts in CO2 Reforming of Methane. Catal Lett 150, 3256–3268 (2020). https://doi.org/10.1007/s10562-020-03228-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03228-6

Keywords

Navigation